近年来,单发语音转换(VC)取得了重大进步,使能够用一个句子改变说话者特征。但是,随着该技术的成熟并产生了越来越现实的说法,它很容易受到隐私问题的影响。在本文中,我们提出了RW-Voiceshield,以保护声音免于复制。这是通过通过使用基于原始波形的生成模型产生的不可察觉的噪声来有效攻击单发VC模型来实现的。使用最新的单发VC模型进行测试,我们进行了测试,在黑盒和白色盒子方案下进行主观和客观评估。我们的结果表明,VC模型产生的话语与受保护的说话者的话语之间的说话者特征存在显着差异。此外,即使在受保护的话语中引入了对抗性噪声,说话者的独特特征仍然可以识别。索引术语:语音转换,对抗性攻击,扬声器verification,扬声器表示
大型语言模型(LLMS)传统上依赖手动及时工程,这可能是耗时且容易受到人类偏见的影响。在本文中,我们提出了一个基于进化增强学习原理(EVORL)的对抗性进化增强学习(AERL)框架[Lin等,2023],以实现对AI剂的持续自我投资。我们的方法迭代生成,测试和完善了通过四个组件的提示或配置:(1)进化提示作者/改进器/改善者,(2)进化模型,(3)对抗模型和(4)法官。通过将候选模型暴露于对抗性的场景中,并通过进化运算符选择最佳变体,AERL促进了强大的,域特异性的解决方案,而无需重新进行过多的人类试验和错误。受到Evorl [Bai等,2023]中多目标优化技术的启发和对抗性训练方法[Goodfellow等人,2014],我们的经验性和有意义的示例来自分散财务(DEFI)(DEFI),代码生成,并且数学推理说明了我们框架的多功能性。结果表明,对抗性的进化策略可以在维持高适应性和性能的同时,诱导地减少人驱动的猜测。
摘要 - 脑启发的超维度计算(HDC),也称为矢量符号结构(VSA),是一种急剧的“非von neumann”计算方案,该方案模仿人脑功能以处理信息或使用抽象和高维模式来处理信息或执行学习任务。与深神经网络(DNN)相比,HDC显示出诸如紧凑的模型大小,能量效率和少量学习的优势。尽管有这些优势,但HDC的一个不足的区域是对抗性的鲁棒性。现有的作品表明,HDC容易受到对抗性攻击的攻击,在这种攻击中,攻击者可以在原始输入中添加少量扰动到“傻瓜” HDC模型,从而产生错误的预测。在本文中,我们通过开发一种系统的方法来测试和增强HDC对对抗性攻击的鲁棒性,系统地研究HDC的对抗性鲁棒性,并具有两个主要成分:(1)TestHD,这是一种可以为给定的HDC模型生成高素质高素质的测试工具,该工具可以为给定的HDC模型生成高素质的高素质数据; (2)GuardHD,它利用TestHD生成的对抗数据来增强HDC模型的对抗性鲁棒性。testHD的核心思想建立在模糊测试方法之上。我们通过提出基于相似性的覆盖率度量来定制模糊方法,以指导TestHD连续突变原始输入,以生成可能触发HDC模型不正确行为的新输入。由于使用差异测试,TestHD不需要事先知道样品的标签。为了增强对抗性鲁棒性,我们设计,实施和评估GuardHD以捍卫HDC模型免受对抗数据的影响。GuardHD的核心思想是一种对抗探测器,可以通过测试HDD生成的对抗样本训练。在推断期间,一旦检测到对抗样本,GuardHD将用“无效”信号覆盖词典结果。我们评估了4个数据集和5个对抗性攻击方案的提议方法,具有6种对抗生成策略和2种防御机制,并相应地比较了性能。GuardHD能够区分精度超过90%的良性和对抗性输入,比基于对抗性训练的基线高达55%。据我们所知,本文在系统地测试和增强对这种新兴脑启发的计算模型的对抗数据的鲁棒性方面提出了第一个全面的努力。索引术语 - 远程计算,差异绒毛测试,对抗攻击,强大的计算
摘要 — 可穿戴传感器的最新发展为有效和舒适地监测生理状态提供了良好的结果。生理状态评估的一个主要挑战是迁移学习问题,这是由于不同用户或同一用户的不同记录会话的生物信号域不一致而导致的。我们提出了一种用于迁移学习的对抗推理方法,以从压力状态水平评估中的生理生物信号数据中提取解开的干扰鲁棒表示。我们利用任务相关特征和人员判别信息之间的权衡,通过使用对抗网络和干扰网络来联合操纵和解开编码器学习到的潜在表示,然后将其输入到判别分类器。跨受试者转移评估的结果证明了所提出的对抗框架的优势,从而展示了其适应更广泛受试者的能力。最后,我们强调我们提出的对抗迁移学习方法也适用于其他深度特征学习框架。索引词——压力水平评估、生理生物信号、对抗网络、迁移学习、深度神经网络、解耦表示学习
摘要 — 可穿戴传感器的最新发展为有效和舒适地监测生理状态提供了良好的结果。生理状态评估的一个主要挑战是迁移学习问题,这是由于不同用户或同一用户的不同记录会话的生物信号域不一致而导致的。我们提出了一种用于迁移学习的对抗推理方法,以从压力状态水平评估中的生理生物信号数据中提取解开的干扰鲁棒表示。我们利用任务相关特征和人员判别信息之间的权衡,通过使用对抗网络和干扰网络来联合操纵和解开编码器学习到的潜在表示,然后将其输入到判别分类器。跨受试者转移评估的结果证明了所提出的对抗框架的优势,从而展示了其适应更广泛受试者的能力。最后,我们强调我们提出的对抗迁移学习方法也适用于其他深度特征学习框架。索引词——压力水平评估、生理生物信号、对抗网络、迁移学习、深度神经网络、解耦表示学习
深度学习是人工智能的一个分支,已被证明是改变医疗诊断和医疗保健的宝贵工具。通过高效分析海量数据集中的复杂模式,深度学习推动了医学影像分析、疾病检测和个性化医疗的重大进展。具体而言,在医学影像方面,深度学习算法在解释 MRI 扫描、X 射线和 CT 扫描方面表现出卓越的精度,有助于早期识别疾病并改善患者治疗效果。此外,这些模型可以分析广泛的患者数据,以支持疾病诊断和预后,最终实现更精确、更及时的诊断和治疗决策。虽然深度学习模型在医学诊断方面具有巨大潜力,但它们很容易受到对抗性攻击的操纵。这些攻击可能会造成严重后果,可能导致误诊并损害患者的健康。对抗性攻击涉及试图通过向模型提供精心制作的输入(称为对抗性示例)来欺骗模型做出错误的预测。这些示例是合法数据的修改版本,人类无法区分,但会导致模型非常肯定地对其进行错误分类。在医学影像分析领域,即使对医学图像进行微小的修改,例如添加难以察觉的噪声或进行微小的有针对性的修改,也会导致深度学习算法误解数据,从而可能导致误诊或错误的治疗建议。同样,在疾病诊断和个性化医疗方面,对手可能会篡改患者数据,诱使模型做出不准确的预测或诊断。
脑机接口 (BCI) 可以实现大脑与外部设备之间的直接通信。脑电图 (EEG) 因其便利性和低成本而成为 BCI 的常见输入信号。大多数对基于 EEG 的 BCI 的研究都集中在 EEG 信号的准确解码上,而忽略了它们的安全性。最近的研究表明,BCI 中的机器学习模型容易受到对抗性攻击。本文提出了基于对抗性过滤的基于 EEG 的 BCI 的逃避和后门攻击,这些攻击非常容易实现。在来自不同 BCI 范式的三个数据集上的实验证明了我们提出的攻击方法的有效性。据我们所知,这是第一项关于基于 EEG 的 BCI 对抗性过滤的研究,这引发了新的安全问题并呼吁更多关注 BCI 的安全性。
回想一下具有两组概率分布 P 和 Q 的经典假设检验设置。研究人员从分布 p ∈ P 或分布 q ∈ Q 中接收 n 个 iid 样本,并想要确定这些点是从哪个集合中采样的。众所周知,误差下降的最佳指数速率可以通过简单的最大似然比检验来实现,该检验不依赖于 p 或 q,而只依赖于集合 P 和 Q。我们考虑该模型的自适应泛化,其中 p ∈ P 和 q ∈ Q 的选择可以在每个样本中以某种方式更改,这取决于先前的样本。换句话说,在第 k 轮中,攻击者在第 1, . . ., k − 1 轮中观察了所有先前的样本后,选择 pk ∈ P 和 qk ∈ Q,目的是混淆假设检验。我们证明,即使在这种情况下,也可以通过仅取决于 P 和 Q 的简单最大似然检验来实现最佳指数错误率。然后我们表明对抗模型可用于使用受限测量对量子态进行假设检验。例如,它可以用于研究仅使用可通过局部操作和经典通信 (LOCC) 实现的测量来区分纠缠态与所有可分离态集合的问题。基本思想是,在我们的设置中,可以通过自适应经典对手模拟纠缠的有害影响。我们在这种情况下证明了一个量子斯坦引理:在许多情况下,最佳假设检验率等于两个状态之间适当的量子相对熵概念。特别是,我们的论证为李和温特最近加强冯诺依曼熵的强亚可加性提供了另一种证明。
包括安全性[63],生物识别技术[38]和刑事侵犯[45],在许多情况下表现优于人类[12,48,61]。尽管这种技术的积极方面,但FR系统严重威胁了数字世界中的个人安全和隐私,因为它们有可能使大规模监视能力[1,67]。进行审查,政府和私人实体可以使用FR系统来通过刮擦Twitter,LinkedIn和Facebook等社交媒体资料的面部来跟踪用户关系和活动[18,20]。这些实体通常使用特定的FR系统,其规格是公众未知的(黑匣子模型)。因此,迫切需要采取一种有效的方法来保护面部隐私免受这种未知的FR系统的影响。理想的面部隐私保护算法必须在自然和隐私范围之间取得正确的平衡[70,77]。在这种情况下,“自然性”被定义为没有人类观察者很容易掌握的任何噪声伪影和人类认识的身份。“隐私保护”是指受保护图像必须能够欺骗黑盒恶意FR系统的事实。换句话说,被指定的图像必须与给定的面部图像非常相似,并且对于人类观察者而言是无伪影的,而同时欺骗了一个未知的自动化FR系统。由于产生自然主义面孔的失败会严重影响在社交媒体平台上的用户体验,因此它是采用隐私增强算法的必要预先条件。1)[22,25,39,72]。最近的作品利用对抗性攻击[57]通过覆盖原始面部图像[6,53,74]上的噪声约束(有限的)广泛扰动来掩盖用户身份。由于通常在图像空间中优化了对抗示例,因此通常很难同时实现自然性和隐私[70]。与基于噪声的方法不同,不受限制的对抗示例并未因图像空间中扰动的大小而影响,并且在对敌方有效的同时,对人类观察者来说表现出更好的感知现实主义[3,55,68,76]。已经做出了几项努力,以生成误导FR系统的不受限制的对抗示例(请参阅Tab。在其中,基于对抗化妆的方法[22,72]随着
摘要 — 视觉注意是人脑的基本机制,它启发了深度神经网络中注意机制的设计。然而,大多数视觉注意研究采用眼动追踪数据而不是直接测量大脑活动来表征人类的视觉注意。此外,人类视觉系统中与注意相关的对象和被注意忽略的背景之间的对抗关系尚未得到充分利用。为了弥补这些差距,我们提出了一种新颖的受大脑启发的对抗性视觉注意网络 (BI-AVAN),直接从功能性大脑活动中表征人类的视觉注意。我们的 BI-AVAN 模型模仿与注意相关/被忽略的对象之间的偏向竞争过程,以无监督的方式识别和定位人脑以关注的电影帧中的视觉对象。我们使用独立的眼动追踪数据作为验证的基本事实,实验结果表明,我们的模型在推断有意义的人类视觉注意力和映射大脑活动与视觉刺激之间的关系时取得了稳健且有希望的结果。我们的 BI-AVAN 模型为利用大脑功能架构的新兴领域做出了贡献,以启发和指导人工智能(AI)中的模型设计,例如深度神经网络。