Loading...
机构名称:
¥ 1.0

摘要 - 脑启发的超维度计算(HDC),也称为矢量符号结构(VSA),是一种急剧的“非von neumann”计算方案,该方案模仿人脑功能以处理信息或使用抽象和高维模式来处理信息或执行学习任务。与深神经网络(DNN)相比,HDC显示出诸如紧凑的模型大小,能量效率和少量学习的优势。尽管有这些优势,但HDC的一个不足的区域是对抗性的鲁棒性。现有的作品表明,HDC容易受到对抗性攻击的攻击,在这种攻击中,攻击者可以在原始输入中添加少量扰动到“傻瓜” HDC模型,从而产生错误的预测。在本文中,我们通过开发一种系统的方法来测试和增强HDC对对抗性攻击的鲁棒性,系统地研究HDC的对抗性鲁棒性,并具有两个主要成分:(1)TestHD,这是一种可以为给定的HDC模型生成高素质高素质的测试工具,该工具可以为给定的HDC模型生成高素质的高素质数据; (2)GuardHD,它利用TestHD生成的对抗数据来增强HDC模型的对抗性鲁棒性。testHD的核心思想建立在模糊测试方法之上。我们通过提出基于相似性的覆盖率度量来定制模糊方法,以指导TestHD连续突变原始输入,以生成可能触发HDC模型不正确行为的新输入。由于使用差异测试,TestHD不需要事先知道样品的标签。为了增强对抗性鲁棒性,我们设计,实施和评估GuardHD以捍卫HDC模型免受对抗数据的影响。GuardHD的核心思想是一种对抗探测器,可以通过测试HDD生成的对抗样本训练。在推断期间,一旦检测到对抗样本,GuardHD将用“无效”信号覆盖词典结果。我们评估了4个数据集和5个对抗性攻击方案的提议方法,具有6种对抗生成策略和2种防御机制,并相应地比较了性能。GuardHD能够区分精度超过90%的良性和对抗性输入,比基于对抗性训练的基线高达55%。据我们所知,本文在系统地测试和增强对这种新兴脑启发的计算模型的对抗数据的鲁棒性方面提出了第一个全面的努力。索引术语 - 远程计算,差异绒毛测试,对抗攻击,强大的计算

测试和增强高维计算的对抗性鲁棒性

测试和增强高维计算的对抗性鲁棒性PDF文件第1页

测试和增强高维计算的对抗性鲁棒性PDF文件第2页

测试和增强高维计算的对抗性鲁棒性PDF文件第3页

测试和增强高维计算的对抗性鲁棒性PDF文件第4页

测试和增强高维计算的对抗性鲁棒性PDF文件第5页

相关文件推荐

2024 年
¥1.0
2022 年
¥2.0
2024 年
¥1.0
2024 年
¥1.0
1900 年
¥1.0
2024 年
¥5.0
2024 年
¥1.0
2025 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2019 年
¥3.0