包括安全性[63],生物识别技术[38]和刑事侵犯[45],在许多情况下表现优于人类[12,48,61]。尽管这种技术的积极方面,但FR系统严重威胁了数字世界中的个人安全和隐私,因为它们有可能使大规模监视能力[1,67]。进行审查,政府和私人实体可以使用FR系统来通过刮擦Twitter,LinkedIn和Facebook等社交媒体资料的面部来跟踪用户关系和活动[18,20]。这些实体通常使用特定的FR系统,其规格是公众未知的(黑匣子模型)。因此,迫切需要采取一种有效的方法来保护面部隐私免受这种未知的FR系统的影响。理想的面部隐私保护算法必须在自然和隐私范围之间取得正确的平衡[70,77]。在这种情况下,“自然性”被定义为没有人类观察者很容易掌握的任何噪声伪影和人类认识的身份。“隐私保护”是指受保护图像必须能够欺骗黑盒恶意FR系统的事实。换句话说,被指定的图像必须与给定的面部图像非常相似,并且对于人类观察者而言是无伪影的,而同时欺骗了一个未知的自动化FR系统。由于产生自然主义面孔的失败会严重影响在社交媒体平台上的用户体验,因此它是采用隐私增强算法的必要预先条件。1)[22,25,39,72]。最近的作品利用对抗性攻击[57]通过覆盖原始面部图像[6,53,74]上的噪声约束(有限的)广泛扰动来掩盖用户身份。由于通常在图像空间中优化了对抗示例,因此通常很难同时实现自然性和隐私[70]。与基于噪声的方法不同,不受限制的对抗示例并未因图像空间中扰动的大小而影响,并且在对敌方有效的同时,对人类观察者来说表现出更好的感知现实主义[3,55,68,76]。已经做出了几项努力,以生成误导FR系统的不受限制的对抗示例(请参阅Tab。在其中,基于对抗化妆的方法[22,72]随着
本项目使用深度学习技术介绍了用于图像着色和文本对图像生成的Web应用程序。应用程序包括两个主要模块:图像着色,将黑白图像转换为颜色,以及文本到图像生成,该图像基于文本描述创建图像。用于图像着色,预先训练的深度神经网络模型可用于预测灰度图像的色彩信息。该模型是使用OpenCV的DNN模块实现的,并且能够准确恢复颜色为灰度图像。在文本到图像生成模块中,采用稳定的扩散管道来生成文本提示中的图像。本管道利用深度学习技术根据用户提供的文本描述来合成图像。Web应用程序提供了一个用户友好的接口,供用户上传图像以进行着色和输入文本提示以生成图像。处理后,应用程序将有色的图像或生成的图像返回给用户。总体而言,该项目展示了深度学习模型在增强视觉内容创建方面的潜力,并为用户提供了一种实用的应用程序,可以交互探索图像着色和文本驱动的图像生成。
深度学习是人工智能的一个分支,已被证明是改变医疗诊断和医疗保健的宝贵工具。通过高效分析海量数据集中的复杂模式,深度学习推动了医学影像分析、疾病检测和个性化医疗的重大进展。具体而言,在医学影像方面,深度学习算法在解释 MRI 扫描、X 射线和 CT 扫描方面表现出卓越的精度,有助于早期识别疾病并改善患者治疗效果。此外,这些模型可以分析广泛的患者数据,以支持疾病诊断和预后,最终实现更精确、更及时的诊断和治疗决策。虽然深度学习模型在医学诊断方面具有巨大潜力,但它们很容易受到对抗性攻击的操纵。这些攻击可能会造成严重后果,可能导致误诊并损害患者的健康。对抗性攻击涉及试图通过向模型提供精心制作的输入(称为对抗性示例)来欺骗模型做出错误的预测。这些示例是合法数据的修改版本,人类无法区分,但会导致模型非常肯定地对其进行错误分类。在医学影像分析领域,即使对医学图像进行微小的修改,例如添加难以察觉的噪声或进行微小的有针对性的修改,也会导致深度学习算法误解数据,从而可能导致误诊或错误的治疗建议。同样,在疾病诊断和个性化医疗方面,对手可能会篡改患者数据,诱使模型做出不准确的预测或诊断。
图是复杂结构的典型非欧几里得数据。近年来,Riemannian图表的学习已成为欧几里得学习的令人兴奋的替代方法。,里曼尼亚方法仍处于早期阶段:无论结构复杂性如何,大多数方法都会出现单个曲率(半径),由于指数/对数映射而导致数值不稳定,并且缺乏捕获基调规律性的能力。鉴于上述问题,我们提出了主题感知的Riemannian图表的问题,寻求数值稳定的编码器,以在带有无标签的多样化曲面中限制基序的规律性。为此,我们提供了一种具有生成对比度学习(Motifrgc)的新型主题Riemannian模型,该模型以一种自我监督的方式在Riemannian歧管中进行了Minmax游戏。首先,我们提出了一种新型的Riemannian GCN(D-GCN),在该GCN(D-GCN)中,我们用di-Versifed因子构建了由产品层构建多种狂热的歧管,并用稳定的内核层代替了指数/对数映射。第二,我们引入了一种主题感知的riemannian生成对比学习,以捕获构造的歧管中的主题规律性,并在没有外部标签的情况下学习主题感知的节点表示。经验结果表明了Mofrgc的优越性。
随着视觉变换器 (ViT) 的巨大成就,基于变换器的方法已成为解决各种计算机视觉任务的新范式。然而,最近的研究表明,与卷积神经网络 (CNN) 类似,ViT 仍然容易受到对抗性攻击。为了探索不同结构模型的共同缺陷,研究人员开始分析跨结构对抗性迁移能力,而这方面仍未得到充分研究。因此,在本文中,我们专注于 ViT 攻击,以提高基于变换器和基于卷积的模型之间的跨结构迁移能力。先前的研究未能彻底调查 ViT 模型内部组件对对抗性迁移能力的影响,导致性能较差。为了克服这个缺点,我们开展了一项激励研究,通过线性缩小 ViT 模型内部组件的梯度来分析它们对对抗性迁移能力的影响。基于这项激励研究,我们发现跳跃连接的梯度对迁移能力的影响最大,并相信来自更深块的反向传播梯度可以增强迁移能力。因此,我们提出了虚拟密集连接方法(VDC)。具体来说,在不改变前向传播的情况下,我们首先重构原始网络以添加虚拟密集连接。然后,在生成对抗样本时,我们通过虚拟密集连接反向传播更深层注意力图和多层感知器(MLP)块的梯度。大量实验证实了我们提出的方法优于最先进的基线方法,ViT模型之间的可迁移性提高了8.2%,从ViT到CNN的跨结构可迁移性提高了7.2%。
本文档包含攻击分类并定义了讨论人工智能威胁时使用的关键术语。分类法和技术解释列表将这些威胁置于特定背景下,以提供易于理解和适用的层次结构,以及可供非金融部门实体使用的金融服务业相关文件。该分类法结合了现有文献和公共分类法,以与公共和已采用的替代方案保持一致 - 包括 NIST 对抗机器学习:攻击和缓解的分类和术语 1 - 以确保文献、报告和讨论的一致性,并为该主题的进一步工作奠定基础。但是,FS-ISAC 人工智能风险工作组的框架旨在全面涵盖金融部门实体面临的人工智能威胁,同时考虑目前发布的替代方案未涉及的其他风险。
围绕人工智能发展的绝大多数讨论都认为,与“人类价值观”相一致的屈从的“道德”模型是普遍有益的——简而言之,好的人工智能是谄媚的人工智能。我们探索了谄媚范式的阴影,我们将这种设计空间称为对抗性人工智能:令人不快、粗鲁、打断、对抗、挑战等人工智能系统——嵌入了相反的行为或价值观。对抗性人工智能系统远非“坏的”或“不道德的”,我们考虑的是,对抗性人工智能系统有时是否可能给用户带来好处,比如迫使用户面对他们的假设,建立适应力,或发展更健康的关系界限。通过形成性探索和推测性设计研讨会(参与者设计了采用对抗性的虚构人工智能技术),我们为对抗性人工智能布局了一个设计空间,阐明了潜在的好处、设计技术和将对抗元素嵌入用户体验的方法。最后,我们讨论了该领域的诸多伦理挑战,并确定了对抗性人工智能负责任设计的三个维度——同意、背景和框架。
摘要 - 对象检测是一个关键函数,可从传感器获取的数据中检测对象的位置和类型。在自主驾驶系统中,使用来自摄像机和激光镜头的数据进行对象检测,并根据结果,控制车辆以遵循最安全的路线。但是,据报道,基于机器学习的对象检测具有对对抗样本的脆弱性。在这项研究中,我们提出了一种新的攻击方法,称为LIDAR对象检测模型“ Shadow Hack”。虽然先前的攻击方法主要添加了扰动点云到激光雷达数据中,但在这项研究中,我们引入了一种在激光雷达点云上生成“对抗阴影”的方法。特别是,攻击者从战略上放置了诸如铝制休闲垫之类的材料,以在激光雷达点云上重现优化的位置和阴影的形状。该技术可能会在自动驾驶汽车中误导基于激光雷达的对象检测,从而导致诸如制动和避免操纵之类的行动导致交通拥堵和事故。我们使用仿真来重现Shadow Hack攻击方法,并评估攻击的成功率。此外,通过揭示攻击成功的条件,我们旨在提出对策并有助于增强自动驾驶系统的鲁棒性。
近年来,自动驾驶汽车发动机传感器攻击的风险引起了人们的显着关注。这些攻击操纵传感器读数,对基于机器学习模型的对象识别系统构成威胁。非常关注的是“ LiDAR SPOOFENG攻击”,它向欺骗传感器注入恶意信号以检测非易于或缺失的对象[1,2]。这些攻击目标传感器,数据处理和机器学习模型,强调了增强传感器安全性并增强模型鲁棒性的要求。本研究提出了一个新的使用LIDAR的传感系统的攻击矢量,以“ Shadow Hack”,目的是应对其威胁并开发有效的对策。此攻击的概念在于利用激光雷达传感器捕获的点云数据中自然形成的“阴影”(见图1)。LIDAR传感器产生指示对象存在的点云数据,但该数据还包括对象后面形成的阴影。通常,这些阴影在对象检测模型的输出中被忽略,但是它们的存在为对象检测提供了重要的线索。影子黑客通过故意创建它们来欺骗对象检测系统并导致它们出现故障来利用“阴影”的属性。例如,通过放置“阴影材料”,例如在环境中,可以在激光雷达传感器捕获的点云数据中创建误差阴影,从而导致对象检测模型检测不存在的对象(请参见图2)。
这份 NIST 可信和负责任的 AI 报告制定了对抗性机器学习 (AML) 领域的概念分类法并定义了术语。该分类法建立在对 AML 文献的调查基础之上,并按概念层次结构排列,其中包括主要类型的 ML 方法和攻击的生命周期阶段、攻击者的目标和目的以及攻击者的能力和学习过程知识。该报告还提供了相应的方法来减轻和管理攻击的后果,并指出了在 AI 系统生命周期中需要考虑的相关开放挑战。报告中使用的术语与 AML 文献一致,并辅以词汇表,该词汇表定义了与 AI 系统安全相关的关键术语,旨在帮助非专业读者。总之,分类法和术语旨在通过建立对快速发展的 AML 格局的共同语言和理解,为评估和管理 AI 系统安全性的其他标准和未来实践指南提供信息。
