图是复杂结构的典型非欧几里得数据。近年来,Riemannian图表的学习已成为欧几里得学习的令人兴奋的替代方法。,里曼尼亚方法仍处于早期阶段:无论结构复杂性如何,大多数方法都会出现单个曲率(半径),由于指数/对数映射而导致数值不稳定,并且缺乏捕获基调规律性的能力。鉴于上述问题,我们提出了主题感知的Riemannian图表的问题,寻求数值稳定的编码器,以在带有无标签的多样化曲面中限制基序的规律性。为此,我们提供了一种具有生成对比度学习(Motifrgc)的新型主题Riemannian模型,该模型以一种自我监督的方式在Riemannian歧管中进行了Minmax游戏。首先,我们提出了一种新型的Riemannian GCN(D-GCN),在该GCN(D-GCN)中,我们用di-Versifed因子构建了由产品层构建多种狂热的歧管,并用稳定的内核层代替了指数/对数映射。第二,我们引入了一种主题感知的riemannian生成对比学习,以捕获构造的歧管中的主题规律性,并在没有外部标签的情况下学习主题感知的节点表示。经验结果表明了Mofrgc的优越性。
主要关键词