Loading...
机构名称:
¥ 1.0

摘要 - 对象检测是一个关键函数,可从传感器获取的数据中检测对象的位置和类型。在自主驾驶系统中,使用来自摄像机和激光镜头的数据进行对象检测,并根据结果,控制车辆以遵循最安全的路线。但是,据报道,基于机器学习的对象检测具有对对抗样本的脆弱性。在这项研究中,我们提出了一种新的攻击方法,称为LIDAR对象检测模型“ Shadow Hack”。虽然先前的攻击方法主要添加了扰动点云到激光雷达数据中,但在这项研究中,我们引入了一种在激光雷达点云上生成“对抗阴影”的方法。特别是,攻击者从战略上放置了诸如铝制休闲垫之类的材料,以在激光雷达点云上重现优化的位置和阴影的形状。该技术可能会在自动驾驶汽车中误导基于激光雷达的对象检测,从而导致诸如制动和避免操纵之类的行动导致交通拥堵和事故。我们使用仿真来重现Shadow Hack攻击方法,并评估攻击的成功率。此外,通过揭示攻击成功的条件,我们旨在提出对策并有助于增强自动驾驶系统的鲁棒性。

对雷达对象检测的对抗性阴影攻击

对雷达对象检测的对抗性阴影攻击PDF文件第1页

对雷达对象检测的对抗性阴影攻击PDF文件第2页

对雷达对象检测的对抗性阴影攻击PDF文件第3页

对雷达对象检测的对抗性阴影攻击PDF文件第4页

对雷达对象检测的对抗性阴影攻击PDF文件第5页

相关文件推荐