摘要在过去的十年中,研究人员,从业人员和公司努力制定机制来检测网络安全威胁。除其他努力中,这些努力是基于规则的,基于签名的基于签名或监督的机器学习(ML)算法,这些算法被证明有效地检测已经遇到和表征的那些侵犯。取而代之的是,新的未知威胁通常称为零日攻击或零周日,可能未发现,因为这些技术通常会被这些技术误解。近年来,无监督的异常检测算法显示出检测零周的潜力。然而,对无监督异常检测算法的定量分析的专门支持仍然很少,并且通常不会促进元学习,这有可能提高分类性能。在这样的程度上,本文介绍了零周期的问题,并审查了无监督的算法检测。然后,本文采用了提问方法来确定对零日检测进行定量分析的典型问题,并显示了如何使用适当的工具设置和行使无监督的算法。使用最新的攻击数据集,我们对i)特征对无监督算法的检测性能的影响,ii)评估入侵探测器的相关指标,iii)均需比较多个无用的算法,iiv),iv)iv算法,iv)iv)应用元学习的应用以减少错误分类的应用。最终,v)我们测量相对于零周的无监督异常检测算法的检测性能。总的来说,本文典型地说明了如何实际编排和应用适当的方法,过程和工具,甚至提供了非专家,以选择适当的策略来处理零日。
主要关键词