Loading...
机构名称:
¥ 1.0

近年来,物联网设备的数量无疑呈爆炸式增长,达到数十亿台。然而,随着这一发展,一些新的网络安全问题也随之出现。其中一些问题是未经授权设备的部署、恶意代码修改、恶意软件部署或漏洞利用。这一事实促使人们需要基于行为监控的新设备识别机制。此外,由于该领域的进步和处理能力的提高,这些解决方案最近利用了机器和深度学习 (ML/DL) 技术。相比之下,攻击者并没有停滞不前,他们开发了针对上下文修改和 ML/DL 评估规避的对抗性攻击,并将其应用于物联网设备识别解决方案。然而,文献还没有详细分析这些攻击对个人识别解决方案的影响及其对策。这项工作探讨了基于硬件行为的个人设备识别的性能,它如何受到可能的上下文和 ML/DL 重点攻击的影响,以及如何使用防御技术提高其弹性。在这个意义上,它提出了一种基于硬件性能行为的 LSTM-CNN 架构,用于个人设备识别。然后,使用从运行相同软件的 45 台 Raspberry Pi 设备收集的硬件性能数据集,将最常见的 ML/DL 分类技术与所提出的架构进行了比较。LSTM-CNN 改进了以前的解决方案,在所有设备上实现了 +0.96 的平均 F1 分数和 0.8 的最低 TPR。之后,对之前的模型应用了以上下文和 ML/DL 为重点的对抗性攻击,以测试其稳健性。基于温度的上下文攻击无法破坏识别,但一些 ML/DL 最先进的逃避攻击是成功的。最后,选择对抗性训练和模型蒸馏防御技术来提高模型对逃避攻击的弹性,将其稳健性从高达 0.88 的攻击成功率提高到最坏攻击情况下的 0.17,而不会以有影响力的方式降低其性能。

机器学习的对抗性攻击与防御

机器学习的对抗性攻击与防御PDF文件第1页

机器学习的对抗性攻击与防御PDF文件第2页

机器学习的对抗性攻击与防御PDF文件第3页

机器学习的对抗性攻击与防御PDF文件第4页

机器学习的对抗性攻击与防御PDF文件第5页