神经网络容易对稍加修改的输入图像进行错误分类。最近,已经提出了许多防御措施,但没有一种能够持续提高神经网络的鲁棒性。在这里,我们建议使用对抗性攻击作为函数评估来搜索可以自动抵御此类攻击的神经架构。对文献中的神经架构搜索算法的实验表明,虽然它们准确,但它们无法找到鲁棒的架构。一个重要原因在于它们的搜索空间有限。通过创建一种新颖的神经架构搜索,其中包含密集层与卷积层连接的选项以及反之亦然,以及在搜索中添加连接层,我们能够进化出一种在对抗性样本上固有准确的架构。有趣的是,这种进化架构的固有鲁棒性可与对抗性训练等最先进的防御措施相媲美,同时仅在非对抗性样本上进行训练。此外,进化的架构利用了一些特殊的特性,这些特性可能有助于开发更强大的架构。因此,这里的结果证实了更强大的架构是存在的,并为神经网络的开发和探索开辟了一个新的可行性领域。
主要关键词