摘要 — 单独增强单个深度学习模型的鲁棒性只能提供有限的安全保障,尤其是在面对对抗性示例时。在本文中,我们提出了 DeSVig,这是一个去中心化的 Swift Vigilance 框架,用于识别工业人工智能系统 (IAIS) 中的对抗性攻击,使 IAIS 能够在几秒钟内纠正错误。DeSVig 高度去中心化,提高了识别异常输入的有效性。我们尝试使用特殊指定的移动边缘计算和生成对抗网络 (GAN) 来克服由行业动态引起的超低延迟挑战。我们工作最重要的优势是它可以显着降低被对抗性示例欺骗的失败风险,这对于安全优先和延迟敏感的环境至关重要。在我们的实验中,工业电子元件的对抗样本由几种经典的攻击模型生成。实验结果表明,DeSVig 比一些最先进的防御方法更强大、更高效、更具可扩展性。
1。重组质粒设计7 2。初始质粒提取7 3。消化和连接7 4。转换8 5。质粒提取,纯化和DNA测序8 6。蛋白质表达8 7。蛋白质纯化9
IL-27 是 IL-6/IL-12 细胞因子超家族的成员,主要由抗原呈递细胞分泌,特别是树突状细胞、巨噬细胞和 B 细胞。IL-27 具有抗病毒活性,可调节针对病毒的先天和适应性免疫反应。IL-27 在病毒感染环境中的作用尚不明确,促炎和抗炎功能均有描述。在这里,我们讨论了 IL-27 在几种人类疾病病毒感染模型中的作用的最新进展。我们重点介绍了 IL-27 表达调控的重要方面、感染不同阶段的关键细胞来源及其对细胞介导免疫的影响。最后,我们讨论了在人类慢性病毒感染的背景下更好地定义 IL-27 的抗病毒和调节(促炎与抗炎)特性的必要性。
本文介绍了一种新颖的胎儿脑部自动生物测量方法,该方法旨在满足中低收入国家的需求。具体而言,我们利用高端 (HE) 超声图像为低成本 (LC) 临床超声图像构建生物测量解决方案。我们提出了一种新颖的无监督域自适应方法来训练深度模型,使其对图像类型之间显著的图像分布变化保持不变。我们提出的方法采用双对抗校准 (DAC) 框架,由对抗途径组成,可强制模型对以下方面保持不变:i) 来自 LC 图像的特征空间中的对抗性扰动,以及 ii) 外观域差异。我们的双对抗校准方法估计低成本超声设备图像上的小脑直径和头围,平均绝对误差 (MAE) 为 2.43 毫米和 1.65 毫米,而 SOTA 分别为 7.28 毫米和 5.65 毫米。
这项工作是在Ferheen Ayaz在格拉斯哥大学任职时完成的。作者的联系信息:伊德里斯·扎卡里亚(Idris Zakariyya),格拉斯哥大学,格拉斯哥,英国,idris.zakariyya@glasgow.ac.ac.uk; Ferheen Ayaz,城市,伦敦大学,伦敦,英国,ferheen.ayaz@city.ac.uk; Mounia Kharbouche-Harrari,法国Stmicroelectronics,Mounia.kharbouche-harrari@st.com;杰里米·辛格(Jeremy Singer),格拉斯哥大学,英国格拉斯哥,jeremy.singer@glasgow.ac.uk; Sye Loong Keoh,格拉斯哥大学,英国格拉斯哥,syeloong.keoh@ glasgow.ac.uk; Danilo Pau,意大利Stmicroelectronics,danilo.pau@st.com;何塞·卡诺(JoséCano),格拉斯哥大学,英国格拉斯哥,josecano.reyes@glasgow.ac.uk。
Aguilera说,在某些动物中已经成功地测试了吡喃吡啶,并且由制药公司Armaceutica对肺部晚期乳腺癌,肺癌和肝癌的一项试点研究显示,寿命有所增加。,但阿奎莱拉(Aguilera)警告说,在吡诺那丁可以用来治疗公众的癌症之前,它必须进行临床试验,这是一个多年的过程,该过程测试药物以确保其在人类中的安全性和功效。
“对AI系统的对抗性攻击可以采取微小的,几乎是看不见的调整来输入图像,这可以将模型引导到攻击者想要的结果的微妙修改。“这样的脆弱性使恶意行为者能够以真实产出为幌子以欺骗性或有害内容泛滥数字渠道,从而对AI驱动技术的信任和可靠性构成直接威胁。”
结果:VNI的读取器2额定总体图像质量高于VNC(4.90 vs. 4.00; p <.05),而阅读器1没有发现显着差异(4.96 vs. 5.00; p> .05)。在VNC和VNI中的读者之间观察到了实质性的一致性(Krippendorff的Alpha范围:0.628-0.748)。两位读者对VNI的频率不完全发生频率(读者1:29%vs. 15%; p <.05;读者2:24%vs. 20%; p> .05)。尿酸和较小的石头(<5 mm)比VNC和VNI中的Caox和较大的石头更有可能被减去。总体而言,与VNC相比,VNI的石材减法率更高(读者1:22%比16%;阅读器2:25%vs. 10%; p <.05)。辐射剂量和管电压均未显着影响石材减法(p> .05)。
“我们的实验室为该项目开发了一种定制的计算机辅助建模管道,该管道对肽的分子结构进行了建模,并与患病心脏细胞中预测的分子效应子相互作用。计算建模指导特定实验的设计研究分子机制。通过这种方式,计算机辅助建模的优势以及Ritterhoff博士和教授最有效地相互补充。”韦德教授说。
