玻璃碳(GC)是一种独特的碳,具有广泛的有用特性,包括高热稳定性,低热膨胀和出色的电导率。这使其成为热塑性复合材料中加强的有前途的候选人。在这项工作中,使用微米GC粉(µGC)和亚皮平GC粉末(SµGC)制造高密度聚乙烯(HDPE)基础复合材料。通过两种不同的方法将GC钢筋引入聚合物基质中,以形成随机和隔离的增强分布。检查了GC体积含量(φ)和复合结构对电导率的影响。证明,虽然玻璃碳可以比石墨更有效地增强HDPE的电导率,但它与碳Na- Notubes的出色性能相匹配,碳Na- Notubes的性能弥补了它们之间的间隙。研究表明,GC的添加增加了HDPE的电导率,并且在φ≈4%时可以实现渗透阈值(φC)。GC的隔离分布导致渗透阈值的值(φC≈1%)低于随机分布。
对军事,工业和商业应用中高质量电子和通信设备的需求不断增长,导致电子设备和系统紧凑性,从而提高了电路的复杂性。这是一种新型的挑战形式,由于反复的努力,需要对电磁辐射做出许多决定。这些电磁辐射相互干扰,并有可能破坏系统,该系统被称为电磁(EM)污染。因为它会干扰设备或传输通道的操作,因此电磁干扰是关注的关键来源。为了解决这个问题,科学和研究组织已开始为电磁干扰(EMI)屏蔽应用创建各种材料。碳长期以来一直是一种令人着迷的化学物质。碳的同素异形体,例如富勒烯,石墨,石墨烯,碳纳米管和其他改善EMI屏蔽的填充剂,对各种频带都引起了重大兴趣。最初,将多壁碳纳米管(MWCNT)和石墨烯(GNS)功能化以改善导电聚合物界面。聚苯胺/碳纳米管/石墨烯(PANI)/(MWCNT)/(GNS)使用原位氧化聚合过程合成,MWCNT的重量百分比保持恒定,而GN的重量百分比从1-3中增加,然后使用SEM和FTIR分析表征。与纯聚苯胺相比,纳米复合材料的电导率随着GN的重量增长而上升。基于碳的导电聚合物纳米复合材料表现出半
该公司专门为电子、微电子和半导体行业提供先进的导电、非导电和紫外线固化粘合剂和涂料配方,为航空航天、国防、医疗、光电子、电信、井下以及商业装配领域提供产品。凭借超过 150 年的聚合物专业知识,MicroCoat 开发出了毫无疑问最优质的细线无渗色导电粘合剂和“烧结”银粘合剂,TC >150W/mK。我们的非导电密封粘合剂已通过许多公司的 MSL1 测试。该公司每月为全球半导体组件和 MCM 运送数千支导电和非导电芯片粘接粘合剂、灌封、围坝和填充配方。MicroCoat 的“B”阶段导电和非导电薄膜和液体广泛用于芯片粘接和封装密封。
组织工程心脏斑块作为心肌梗塞(MI)具有巨大潜力。然而,为了成功地与包含斑块的细胞的天然组织和适当的功能整合,对于这些斑块来说,模仿天然细胞外基质的有序结构和人类心脏的电导性至关重要。在这项研究中,一种可以为人类诱导的多能干细胞衍生的心肌细胞(ICM)提供导电和地形线索的新复合构建体是为心脏组织工程应用开发的。通过使用气溶胶喷气式喷气式飞机在聚乙二醇(PEG)水凝胶上,在细胞水平的分辨率上,通过在聚乙二醇(PEG)水凝胶上进行预设计的模式,在预设计的图案上以3D打印导电钛(Ti 3 c 2 t x)Mxene制造结构,然后与ICMS播种,并在一周内培养一周的cytoxoxitigity。这项工作中提出的结果说明了3D打印Ti 3 C 2 t X MXENE在对齐ICM上的重要作用,而MYH7,SERCA2和TNNT2表达式显着增加,并且具有改善的同步节拍,并进行了传导速度。这项研究表明,3D印刷Ti 3 C 2 t X MXENE可能可用于创建与MI治疗的生理相关的心脏斑块。
尽管所有这些过程都对电子结构具有一定的影响,但通常将粒子排列固定在干燥步骤中。这意味着,干燥步骤定义了电极孔结构,随后可以通过Cal-Endering进一步压缩。此外,由于在干燥前沿积累,干燥过程对电极的机械完整性产生了很大的影响,因此限制了电极的凝聚力和粘合强度。电导率受导电添加剂的分布的影响,这也容易迁移,并与活性材料接触。这些复杂的过程在微观尺度的干燥过程中发生,尚未完全阐明,因此为优化整体电池性能留出了空间。
Organic electrochemical transistors (OECTs), [16,18–27] is currently one of the most studied organic electronic devices and is explored in various applications, such as in fully printed logic circuits, [16,26] active matrix addressed displays, [17] dis- play driver circuits, [19] sensors, [22,23,28–33] neuromorphics, [24] just仅举几例。可以使用不同的打印技术,例如丝网印刷,[19,21] 3D打印,[30]喷墨打印,[34]和其他流程来通过具有成本效益的协议来制造。[35,36]基于OECT的逻辑门和电路也进行了广泛的研究,[35,37-40],其中逆变器作为任何组合逻辑电路的基本组件都起着关键作用。通过采用基于OECT的逆变器[16,26,35]作为高级电路的基本组成部分,可以实现各种形式的基于OECT的数字电池[16,24,35]。在有机电子设备中,通过考虑针对目标的最终应用,在低电压和低功率下运行的电路是完全需要的。通过降低电路的操作电压率,可以最大程度地减少电压应变和降解风险。[16]然后,这允许长时间的操作寿命,与其他技术平台的简单集成以及与通信基础架构的连接。例如,在物联网(IoT)应用程序中,为了降低使用大量电子组件在紧凑型电路中使用大量电子组件的整体功耗,要求对单个逻辑组件的有效使用来扩展IoT生态系统。要意识到这样的电路,必须降低系统元件的操作电压水平。由于逆变器是逻辑电路的关键要素,因此最终电路的工作电压范围可以在很大程度上降低
灵活的混合光电集成集成在实现低温性方案基板上的高性能设备的低成本制造之前,面临着几个基本挑战。这些低成本基板通常会带来严格的处理要求,从而导致关键的制造问题。新兴技术,例如激光或基于灰灯(所谓的光子)后加工后处理的烧结,可替代传统烤箱的热敏感底物处理。1 - 8通过仔细调整每种材料的加工条件,可以在同一设备上独立处理多个薄LM,而无需高速退火和高速。用金属纳米颗粒制成的薄lm需要用少量的高功率密度脉冲来处理高密度导电lms。9,10对于陶瓷材料,较大的低功率脉冲倾向于改善
摘要:以其灵活性,生物相容性和电导率而闻名的导电水凝胶在医疗保健,环境监测和软机器人技术等领域中发现了广泛的应用。3D打印技术的最新进步改变了导电水凝胶的制造,为传感应用创造了新的机会。本综述概述了3D打印的导电水凝胶传感器的制造和应用的进步。首先,简要审查了导电水凝胶的基本原理和制造技术。然后,我们探索用于导电水凝胶的各种3D打印方法,讨论它们各自的优势和局限性。审查还总结了3D打印导电水凝胶传感器的应用。此外,突出显示了3D打印导电水凝胶传感器的观点。本评论旨在使研究人员和工程师对当前3D打印的导电水凝胶传感器的景观有所了解,并激发这个有前途的领域的未来创新。
在过去几年中,PCBL大大扩展了其专业产品组合。它已在Bleumina品牌下推出了50多个年级,用于工程塑料,墨件,油漆和涂料应用以及用于导电应用,例如导电聚合物,静电放电,电线,电缆和电池等导电应用。添加乙炔黑色将显着加强其在快速增长的导电段中提供众多等级的能力。