Visvesvaraya技术大学(VTU),以Bharat Ratna Dr。 M. Visvesvaraya爵士根据卡纳塔克邦政府1994年的VTU法案,于1998年4月1日成立。这所大学是为了促进技术教育,研究,创新和外展计划的计划和可持续发展。大学对整个卡纳塔克邦有管辖权。t的总部位于贝拉加维,为了平稳的行政活动,在班加罗尔(Muddenahalli),Mysuru,Kalaburagi和Belagavi建立了四个地区办事处。大学主校园位于贝拉加维,被恰当地称为“ Jnana Sangama”,“知识的融合”。“ jnana sangama”校园分布在116英亩的宁静氛围上,具有现代的建筑优雅和美丽。
美国海军具有独特的优势,可以加强综合威慑、向前推进战役并建立持久的作战优势。我们将建立、维护、训练和装备一支具有作战能力、占主导地位的海军力量,以加强我们的战略伙伴关系、遏制冲突,并在必要时赢得我们国家的战争。
这个深入的重点探讨了再生医学和创新疗法领域的发展。神经疗法的创始人兼首席执行官Cory Nicholas博士对其有希望的临床前数据有着令人信服的见解,该数据涉及NRTX-1001,这是一种旨在对抗源自人类Pluripotent干细胞的再生神经细胞疗法。史蒂夫·奥基夫(Steve O'Keeffe),愤怒的@关节炎背后的有远见者,巴塞尔大学的伊万·马丁(Ivan Martin)博士进行了关于再生方法在彻底改变骨关节炎治疗方面的变革潜力的对话,为受影响的人带来了希望。Insmed Incorporated首席科学官Brian Kaspar博士讨论了基因疗法开发中面临的挑战,阐明了医疗研究和发展的不断发展的景观,以及我们如何推动界限来应对这些挑战。最后,联合创始人,卫星治疗学首席执行官兼董事会成员弗兰克·格里森(Frank Gleeson)深入研究了肌肉修复的世界,探索了再生医学的进步和可能性。
Vision语言导航(VLN)要求代理在基于视觉观察和自然语言说明的3D环境中导航。很明显,成功导航的关键因素在于全面的场景理解。以前的VLN代理使用单眼框架直接提取透视视图的2D特征。虽然很简单,但他们为捕获3D几何和语义而努力,导致部分不完整的环境代表。为了实现具有细粒细节的全面3D表示,我们引入了体积环境(VER),将物理世界脱氧于结构化的3D细胞中。对于每个单元格,通过2D-3D采样将多视图2D特征归纳到如此统一的3D空间中。通过对VER的粗略到纤维特征进行推断和多任务学习,我们的代理人可以共同预测3D占用率,3D房间布局和3D边界框。基于在线收集的vers,我们的代理构成了体积状态估计,并构建情节内存以预测下一步。实验结果表明,我们从多任务学习的环境表示导致了VLN的可观绩效提高。我们的模型在VLN基准(R2R,Reverie和R4R)之间实现了最新的性能。
On-On-On-On-Orbit服务(OO)包括一系列服务类型,以增加卫星的寿命及其性能,并确保它不会助长太空碎片的日益增长的问题。鉴于“巨型构成”的兴起,避免卫星被遗弃的人尤其重要。 在1970年代的第一个案件中,使用从地面或宇航员控制的机器人和机器人(例如在维修和升级到哈勃太空望远镜(HST)和国际空间站(ISS))中,使用了从地面或宇航员控制的机器人多次实现了OOS。 这使各种太空机构和其他组织可以为多种OOS任务类型的成熟流程和工具。鉴于“巨型构成”的兴起,避免卫星被遗弃的人尤其重要。在1970年代的第一个案件中,使用从地面或宇航员控制的机器人和机器人(例如在维修和升级到哈勃太空望远镜(HST)和国际空间站(ISS))中,使用了从地面或宇航员控制的机器人多次实现了OOS。这使各种太空机构和其他组织可以为多种OOS任务类型的成熟流程和工具。
美国太空部队的全球定位系统 (GPS) 星座为作战人员提供了前所未有的定位和计时精度。自 GPS 诞生以来,它已成为一种全球公用设施,其商业用途远远超过军事用途。空中交通管制、银行、农业和蜂窝网络都依赖于不间断的 GPS 覆盖。美国下一颗实验导航卫星 NTS-3 将于 2022 年发射,它将突破当今定位、导航和计时 (PNT) 技术的界限,为更灵活、更强大、更具弹性的卫星导航技术架构铺平道路。
最近在操纵和运动领域取得了显着进展,但移动操作仍然是一个长期以来的挑战。与运动或静态操纵相比,移动系统必须在非结构化和动态环境中可行的多种长距离任务。尽管应用程序广泛且有趣,但在开发这些系统(例如基础和手臂之间的协调)时,有很多挑战,依靠在船上感知到感知和与环境互动,最重要的是,同时整合了所有这些部分。先前的作品使用模块化技能来解决问题,以使其动机和操纵被微不足道地捆绑在一起。这引起了多个限制
