新月形免疫学研究所(Bric-NII)提出了一个小型研讨会和“大分子X射线晶体学和蛋白质结构预测”的研讨会。加入我们,参加一个沉浸式的为期3天的活动,其中包括该领域的主要专家的演讲,并进行了一个探索大分子X射线晶体学和结构预测的理论和实践方面的研讨会。
X射线 - 形式的相互作用本质上是弱的,X射线的高能量和动量对应用强光 - 耦合技术构成了巨大的挑战,这些耦合技术在更长的波长中非常有效地控制和操纵辐射。技术,例如在金属丝接口处或纳米结构内的光和电子之间增强的耦合,以及purcell效应(在金属表面附近自发发射,因此由于其根本不同的能量和动量尺度而不适用于X射线。在这里,我们提出了一种新的方法,用于通过将X射线光子与紫外线(UV)中的spps纠缠到铝制的自发参数下偏见(SPDC)中,将X射线耦合到表面等离子体极化子(SPP)。如本工作所示,SPP的不同特征印在检测到的X射线光子的角度和能量依赖性上。我们的结果突出了使用spps控制X射线的潜力,从而解开了激动人心的机会,以增强X射线 - 物质相互作用并探索具有原子尺度分辨率的等离子现象,这是X射线独特启用的功能。
1 Applied Physics II系,科学技术学院,UPV / EHU,Sarriena区Z / G,48940,Leioa,Basque < / div>
摘要:骨质疏松症是一种由骨矿物质含量降低和骨微体系结构的变化所定义的疾病,对使用X射线图像进行准确分类构成了挑战。本文旨在从跟骨放射线照片中提取纹理特征,并选择最佳的纹理特征,这些特征可用于训练机器学习分类器模型以检测骨质疏松症。这项工作基于多分辨率分析和微结构分析,以表征来自跟骨X光片的小梁骨微体系结构。将图像转换为使用两级小波分解提取特征细节。结构纹理方法,例如局部二进制图案,分形维度和Gabor滤波器被应用于小波分解的图像。使用独立的样本t检验和特征选择方法选择了最具区别的纹理特征。机器学习模型是通过使用最佳纹理功能训练分类器来构建的,以从骨质疏松图像中对健康图像进行分类。使用包含跟骨放射线图像的公共挑战数据集评估了所提出方法的E ff。值得注意的是,最佳分类是通过使用正向特征选择选择的功能训练的K-Nearest邻居获得的,精度为78.24%。结果表明该方法作为低成本筛查骨质疏松症的可能替代工具的潜力。
降低您的能耗,降低运营成本,并使用Zeiss Eco安静模式创建更安静的工作环境。此创新的SEM系统升级使您可以通过优化系统性能并最大程度地减少不必要的能源使用来更可持续地工作。通过实施Eco安静模式,您可以通过增强团队的舒适度来朝着可持续性目标,减少碳足迹并改善日常运营的重大进展。
软X射线断层扫描(SXT)可以实现完全水合,低温保存的生物样品的三维(3D)成像,揭示了超微结构的细节,而无需染色,嵌入或切片。传统上仅在同步基因设施上可用,激光驱动的等离子源的最新进展导致了紧凑的软X射线显微镜(例如SXT-100)的发展。SXT-100将成像分辨率降低到54 nm全螺距,在30分钟到两个小时内获得了断层图。SXT-100与落叶显微镜整合在一起,通过桥接荧光和电子显微镜来促进相关工作流,同时保留玻璃化样品的结构完整性。我们通过各种用例演示了SXT-100的功能,包括成像Euglena Gracilis,酿酒酵母酵母细胞和哺乳动物细胞中的纳米颗粒。相对较短的断层图采集时间,软X射线断层扫描的几乎没有破坏性的性质以及其定量成像功能强调了其作为高级生物成像的强大工具的潜力。未来的发展有望增强吞吐量和更深入的整合,并与新兴的相关成像方式以及包括组织在内的各种样本类型。
nrel | 4 Molenda,J。和Molenda,M.,2011。基于$ lifepo_4 $系统的锂离子电池的复合阴极材料。Rijeka:Intech。 li,T.,Li,L.,Cao,Y.L.,AI,X.P。 和Yang,H.X.,2010。 FeF3纳米晶体的可逆三电子氧化还原行为是锂离子电池的大容量阴极活性材料。 物理化学杂志C,114(7),第3190-3195页。 Pistorio,F。,Clerici,D.,Mocera,F。和Somà,A.,A.,2022年。关于锂离子电池活性材料中断裂的实验表征的回顾。 Energies,15(23),第9168页。Rijeka:Intech。li,T.,Li,L.,Cao,Y.L.,AI,X.P。和Yang,H.X.,2010。FeF3纳米晶体的可逆三电子氧化还原行为是锂离子电池的大容量阴极活性材料。物理化学杂志C,114(7),第3190-3195页。Pistorio,F。,Clerici,D.,Mocera,F。和Somà,A.,A.,2022年。关于锂离子电池活性材料中断裂的实验表征的回顾。Energies,15(23),第9168页。
假设:电荷稳定的胶体纤维素纳米晶体(CNC)可以通过改变体积分数来自组合成高阶的手性列结构。组装过程在各向同性至液晶相变的过程中表现出不同的动力学,可以使用X射线光子相关光谱(XPC)阐明该过程。实验::阴离子CNC分散在丙二醇(PG)中,并且水跨越了一系列体积分数,其中包括多个相变。加上传统特征技术,进行了XPC,以监视不同阶段的动态演化。此外,使用胶体棒获得了模拟的XPCS结果,并将其与实验数据进行了比较,从而提供了对系统动态行为的更多见解。发现::结果表明,在PG的自组装过程中,CNC的粒子动力学在三个阶段经历了阶梯衰变,与观察到的相一致。相变与布朗的总扩散率的总降低相关,降低了四个数量级,在理想的排斥性布朗杆系统中,降低了一千倍以上。鉴于分散在PG和水中的CNC中相似性的相似性,我们假设这些动态行为可以推断到其他
表1:胸部X射线发现的三种优先策略中AI系统的性能指标,包括灵敏度,特异性,正预测值(PPV)和负预测值(NPV)。ppv:阳性预测价值 - 真正阳性的AI阳性病例的比例。npv:负预测价值 - 真正负面因素的AI阴性案例的比例。fpr:误报率 - AI标记的非癌症案件的比例。fnr:假阴性率 - AI错过的癌症病例的比例。
图 1. 带有原子标记方案的 CuL T . DMSO 复合物的 X 射线晶体结构 ORTEP 图。位移椭球以 50% 概率水平绘制。H 原子显示为任意半径的圆。铜配合物的循环伏安法揭示了对应于 Cu I /Cu II 氧化还原过程的准可逆氧化还原对。采用 DFT 和 TD-DFT 理论在 M062X/6-311**G/ SDD 水平进行的量子计算与实验数据高度一致。结果表明,铜化合物具有比尿素更大的静态和动态超极化率值。例如,H 2 LT 的 β 0 值大约是尿素的 68 倍。结果预测所研究的化合物能够成为优异的二阶和三阶 NLO 材料。所制备的配合物以H 2 O 2 为氧化剂,能有效催化环己烯的均相氧化反应,以CuL Bz 为催化剂,转化率可达98% 。以所研究的配合物为捕集剂,在酚红氧化溴化反应中探究了溴过氧化物酶活性,该配合物可作为溴过氧化物酶的潜在功能模型,CuL Bz 催化剂表现出较好的催化活性,反应速率常数k 为2.203 × 10 5 (mol L -1 ) -2 s -1 。[1] A. Okuniewski,D. Rosiak,J. Chojnacki,B. Becker,具有Hg(Cl, Br, I)O = Chalogen 键和不寻常的Hg2S2(Br/I)4 核的新型配合物。 τ'4 结构参数的实用性,Polyhedron 90 (2015) 47 – 57,https://doi.org/10.1016/j.poly.2018.02.016。[2] Z. Tohidiyan、I. Sheikhshoaie、M. Khaleghi、JT Mague,一种含四齿席夫碱的新型铜 (II) 配合物:合成、光谱、晶体结构、DFT 研究、生物活性及其纳米金属氧化物的制备,J. Mol. Struct. 1134 (2017) 706 – 714,https://doi.org/10.1016/j.molstruc.2017.01.026。 [3] TH Sanatkar、A. Khorshidi、E. Sohouli、J. Janczak,四齿 N2O2 席夫碱配体的两种 Cu(II) 和 Ni(II) 配合物的合成、晶体结构和表征及其在肼电化学传感器制造中的应用,Inorg. Chim. Acta 506 (2020),119537,https://doi.org/10.1016/j.ica.2020.119537。作者非常感谢阿尔及利亚高等教育和科学研究部的财政支持。他们感谢意大利那不勒斯费德雷科 II 大学化学科学系的 Francesco RUFFO 教授和 Angella TUZI 教授的帮助。此外,作者非常感谢法国里昂大学、克劳德伯纳德里昂第一大学、CNRS UMR 5280、分析科学研究所(69622 Villeurbanne Cedex)提供的计算设施。