纳米涂料可增强表面硬度,耐腐蚀性和美学效果。基于纳米颗粒的催化剂提高燃烧效率并降低排放。 纳米传感器实时监控车辆性能和安全性。 航空航天工业Y:纳米技术为飞机创造了轻巧的高强度材料。 电子行业:为较小,更强大的设备启用组件的小型化。 量子点在发光二极管(LED)显示器中增强了颜色活力。 医疗制造:纳米级工程改善了植入物的整合和功能。 建筑业:纳米材料可提高耐用性并减轻混凝土的重量。 能源部门:纳米材料提高了太阳能电池的能量转换效率,并有助于提高可再生能源应用的存储能力。 环境修复:基于纳米颗粒的催化剂提高燃烧效率并降低排放。纳米传感器实时监控车辆性能和安全性。航空航天工业Y:纳米技术为飞机创造了轻巧的高强度材料。电子行业:为较小,更强大的设备启用组件的小型化。量子点在发光二极管(LED)显示器中增强了颜色活力。医疗制造:纳米级工程改善了植入物的整合和功能。建筑业:纳米材料可提高耐用性并减轻混凝土的重量。能源部门:纳米材料提高了太阳能电池的能量转换效率,并有助于提高可再生能源应用的存储能力。环境修复:
分形结构是一种独特的几何形状,在自然界中的许多物体中都可以看到,例如云、海岸线、DNA、树木甚至菠萝。这种结构具有多种几何形状、自相似性和空间填充特性。由于这些特性,分形几何形状是无线通信中天线小型化的首选。许多情况都需要小型紧凑型天线,包括体内通信。在本文中,我们回顾了分形天线研究的最新趋势和进展,特别是用于体内通信的可植入天线的小型化。该综述来自从 IEEE、PubMed、Nature、MDPI、Elsevier 和 Google Scholar 等在线图书馆收集的文章。因此,我们收集了 60 多篇与分形植入式天线和体内通信相关的文章。事实上,在过去的几十年里,许多研究人员已经提出了一种具有分形几何的可植入紧凑型天线。分形几何允许在天线的较小区域内布线更长的电气长度。然而,设计分形天线仍有几个挑战,包括带宽、制造复杂性和单元间干扰。关键词:分形几何、分形天线、体内通信、无线通信、可植入天线简介
TINKER 联盟由 10 家优秀的工业公司、3 家研究专家、一家咨询公司和一家服务协会组成,它们都是半导体和微电子制造领域以及材料和工艺开发领域以及 AM 工业领域的主要参与者。所有合作伙伴都在其专业研究领域拥有国内和国际资助项目的记录,作为一流企业,他们通过为参与的中小企业和研发公司获得新的专业知识和技能,捍卫了欧洲在小型化领域的领先地位。
Eurotronics 提供高度先进的印刷电路板技术,满足每位客户的独特需求。除了标准 (HDI) 印刷电路板技术外,Eurotronics 还顺应了市场对小型化的持续趋势:印刷电路板越来越薄,集成度越来越高。我们提供先进的功能,从使用铜填充堆叠微通孔的超细线生产到超薄基材的加工,再到结合装订机和窗口技术的复杂刚柔结合基板的制造。
现代电子工业不断向着更高的功耗、更多的集成功能和小型化发展,这导致了导热填料的出现,使其能够以长期可靠性和低拥有成本解决具有挑战性的散热问题,同时提高现代电子设备的功率密度。因此,高效散热已成为现代电子封装设计中更为关键的要求。热界面材料 (TIM) 被广泛用于制造散热系统中最关键的部件,以冷却和保护集成电路 (IC) 芯片。
作为微电子领域的一个总体趋势,产品小型化越来越重要,并能带来成本和系统优势。顺应这一总体趋势,新型红外凝视阵列越来越紧凑,并能为不同的红外波段提供系统解决方案。在法国,HgCdTe(碲化汞镉/MCT)材料和工艺以及混合技术已达到更先进的水平,以提供这些新型凝视阵列。因此,对于中波(MW)应用,15µm 间距电视格式(640×512)HgCdTe 探测器(称为 Scorpio)配有 1/4-W 微型冷却器和小型化低温技术。这种优化的杜瓦瓶已扩展到 TV/4 格式,使用自 2000 年以来已大规模生产的成功的焦平面阵列。关于长波阵列,Sofradir 多年来一直提供 320×256 LW 探测器,其截止波长在 9 到 12 µm 之间调整,具体取决于所需的应用。基于这一经验,2004 年开发了两种新的 LW HgCdTe 产品,并从 2005 年初开始提供。依靠具有最新改进的标准 HgCdTe 生产工艺和优化的杜瓦瓶系列,现在推出了 Venus LW 探测器。这是一款分辨率更高的 25 µm 间距 384×288 LW IDDCA,配备 0.5 W 微型冷却器,截止波长在 9 到 10 µm 之间,工作温度在 77 K 到 85 K 之间,规格
有机电子离子泵 (OEIP) 已被研究作为一种有前途的解决方案,用于精确局部输送生物信号化合物。OEIP 小型化提供了多种优势,从更好地控制输送的时空到降低植入设备的侵入性。一种小型化途径是开发基于聚电解质填充毛细管纤维的 OEIP。这些设备可以轻松靠近目标细胞和组织,可以被视为其他“离子电子”植入物的起点。迄今为止,OEIP 和其他此类离子电子表现出有限的电极容量,因为它们通常依赖于聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸盐 (PEDOT:PSS) 电极。虽然这种材料在混合离子电子系统中得到了充分研究并且可行,但其体积电容受到最终氧化还原反应的限制。石墨烯是高性能电极的绝佳替代品,低成本溶液处理的石墨烯衍生物尤其有前景,表现出高电荷迁移率和理想的结构特性(轻便、灵活)。本文介绍了溶液处理的还原氧化石墨烯 (RGO) 作为 OEIPS 高性能驱动电极的应用。对 RGO 电极进行了表征,并与标准 PEDOT:PSS(和 Ag/AgCl)电极进行了比较。RGO 表现出更大的电荷存储容量,因此使用寿命更长。石墨烯支持的 OEIP 表现出改进的神经递质传输,而不会对施加的电流水平施加限制。
虽然半导体电路的小型化仍在继续,但它已不再遵循摩尔定律,摩尔定律预测每 18 个月单位面积晶体管数量将翻一番。这种小型化必须在可预见的未来达到其物理极限。克服这一障碍的一种可能途径是使用分子电子学,其中单个分子将充当电子设备的构建块,例如晶体管或存储元件。张 1 最近的一篇评论文章展示了一个活跃的研究领域。Schaub 等人 2,3 报道了一种可控开关,由沉积在 Cu-(110) 表面上的偶氮苯分子组成。如果施加大于 0.3 V 的电压,则可以产生两种对称性相关的互变异构体中的一种,具体取决于扫描隧道显微镜 (STM) 尖端的位置。较小的电压允许在不改变分子的情况下确定其当前的互变异构状态。翻译成计算语言,这构成了一个可以写入和读取的存储元件。不幸的是,STM 尖端需要移动到分子上方的正确位置,这使得操作无法以可能与当前微电子器件相媲美的频率进行。另一个问题是,电导率的变化只与表面垂直的方向有关,因为支撑金属会使任何平行于表面的电压短路。为了制造出可用于电子设备的分子,必须具备三个先决条件:双稳态、
发言人:Dave Franklin (Astrion)、James Lisowski (SciTec)、Rob Mitrevski (L3 Harris)、Mike Corriea (Lockheed-Martin)、Col Robert Davis (USSF) 1430 – 1445 休息 1445 – 1530 小组讨论 / 未来技术 USSF 的新兴技术。本次会议介绍了可能对太空系统和运营产生重大影响的新兴硬件技术。示例主题包括传感器小型化、人工智能和相关技术的进步,这些技术正在扩大小型卫星和立方体卫星的实用性。小组讨论。会议赞助商:KBR