40通信:l.teboul@har.mrc.ac.uk。41通信:steve.murrav@jax.org。*作者及其隶属关系清单出现在本文的末尾。补充材料作者贡献中可用的其他贡献者的完整列表M.-C。 B.,A.Y.R.E.K.,R.K.,H.L.,Y.J.L.,I.L.,A-M.M.,T.F.M.,V.M.F.,S.N.,L.M.M.J.N.,G.T.T.T.T.T.T.M.F.,G.T.O.,G.P.,G.P. D.,M.V.W.,B.J.W.,J.A.W.,L.T。和S.A.M生成的数据,开发的数据工具和数据库以及/或进行了数据和统计分析; A.Y.,D.J.A.,A.L.B,A.B.,S.D.M.B.,H-J.G.C.,Med。 R.S.,J.K.S.,W.C.S.,T.S.,K.P.S.,G.P.T-V。 指导各自机构的研究; M.-C。 B.,L.T。和S.A.M撰写了论文。R.E.K.,R.K.,H.L.,Y.J.L.,I.L.,A-M.M.,T.F.M.,V.M.F.,S.N.,L.M.M.J.N.,G.T.T.T.T.T.T.M.F.,G.T.O.,G.P.,G.P. D.,M.V.W.,B.J.W.,J.A.W.,L.T。和S.A.M生成的数据,开发的数据工具和数据库以及/或进行了数据和统计分析; A.Y.,D.J.A.,A.L.B,A.B.,S.D.M.B.,H-J.G.C.,Med。 R.S.,J.K.S.,W.C.S.,T.S.,K.P.S.,G.P.T-V。指导各自机构的研究; M.-C。 B.,L.T。和S.A.M撰写了论文。
抽象背景超出观察到的细胞结构和线粒体的改变,将罕见的遗传突变与受脱敏突变影响的患者的心力衰竭发展联系在一起的机制尚不清楚,这是由于缺乏相关的人类心肌细胞模型。阐明线粒体在这些机制中的作用的方法,我们研究了源自人类诱导的多能干细胞的心肌细胞,这些干细胞带有杂合的DES E439K突变,这些干细胞是从患者中分离出来的,或者是由基因编辑产生的。为了提高生理相关性,在各向异性的微图案表面上培养心肌细胞以获得伸长和比对的心肌细胞,或者作为心脏球体,以创建微生物。在适用的情况下,通过突然死于携带DES E439K突变的家族的患者的心脏活检证实了心肌细胞的结果,并从五个对照健康的供体中验尸中的心脏样本。结果杂合DES E439K突变导致心肌细胞的总体细胞结构的巨大变化,包括细胞大小和形态。最重要的是,突变的心肌细胞显示出改变的线粒体结构,线粒体呼吸能力和代谢活性,让人联想到患者心脏组织中观察到的缺陷。最后,为了挑战病理机制,我们将正常的线粒体转移到突变体心肌细胞内,并证明这种治疗方法能够恢复心肌细胞的线粒体和收缩功能。结论这项工作突出了DES E439K突变的有害作用,证明了Mito-软骨异常在与Desmin相关心肌病的病理生理学中的关键作用,并为这种疾病打开了新的潜在治疗观点。
在间皮瘤发育实验模型中,早期事件包括双链RNA(DSRNA)中编辑水平的增加。我们假设内源性逆转录病毒(ERV)的表达有助于DSRNA形成和I型干扰素信号传导。与非肿瘤样品相比,肿瘤的 ERV和干扰素刺激的基因(ISG)表达明显更高。 12个肿瘤特异性ERV(“ Mesoerv1-12”)被鉴定出来并通过qPCR在小鼠组织中验证。 与间皮瘤细胞相比,小鼠胚胎成纤维细胞(MEF)的“ Mesoerv1-12”表达较低。 “ Mesoerv1-12”水平通过脱甲基化剂5-Aza-2' - 脱氧胞苷的处理显着提高,并伴随着DSRNA和ISGS的水平升高。 与MEF相比,间皮瘤细胞中的基底ISGS表达更高,并且通过阻断IFNAR1和沉默的MAVS,JAK抑制剂r梭替尼显着降低了。 “ Mesoerv7”启动子在5-Aza-CDR处理后,与假小鼠组织以及间皮瘤细胞以及MEF细胞和MEF相比,在石棉暴露的暴露中被脱甲基化。 这些观察结果发现了石棉诱导的间皮瘤的新颖方面,从而导致ERV表达因启动子去甲基化而引起,并且与DSRNA水平的增加和IFN型信号传导的激活相似。 这些特征对于早期诊断和治疗很重要。ERV和干扰素刺激的基因(ISG)表达明显更高。12个肿瘤特异性ERV(“ Mesoerv1-12”)被鉴定出来并通过qPCR在小鼠组织中验证。与间皮瘤细胞相比,小鼠胚胎成纤维细胞(MEF)的“ Mesoerv1-12”表达较低。“ Mesoerv1-12”水平通过脱甲基化剂5-Aza-2' - 脱氧胞苷的处理显着提高,并伴随着DSRNA和ISGS的水平升高。与MEF相比,间皮瘤细胞中的基底ISGS表达更高,并且通过阻断IFNAR1和沉默的MAVS,JAK抑制剂r梭替尼显着降低了。“ Mesoerv7”启动子在5-Aza-CDR处理后,与假小鼠组织以及间皮瘤细胞以及MEF细胞和MEF相比,在石棉暴露的暴露中被脱甲基化。这些观察结果发现了石棉诱导的间皮瘤的新颖方面,从而导致ERV表达因启动子去甲基化而引起,并且与DSRNA水平的增加和IFN型信号传导的激活相似。这些特征对于早期诊断和治疗很重要。
在过去的几十年中,肥胖症的患病率大大增加,达到法国成年人口的17%,在美国达到42.4%(1,2)。如果几个因素归因于肥胖率的提高,则主要因素是饮食组成,尤其是西方饮食(WD)(3)。WD的特征是过度过滤,富含饱和脂肪,精制碳水化合物以及添加的糖和盐(4)。WD的消费增加了肥胖和代谢合并症的风险,例如2型糖尿病和非酒精性脂肪肝病(NAFLD)(5,6)。目前,2型糖尿病会影响约4.63亿成年人,而NAFLD的患病率估计在世界人口中为25%至30%(7,8)。NAFLD患病率的增加是21世纪的主要挑战,因为NAFLD是肝脏死亡率和发病率最快的贡献者(9)。
1苏黎世大学苏黎世大学分子心脏病学中心,瑞士CH-8952,瓦格斯特拉斯12号; 2瑞士Lugano的Cardiocentro Ticino Institute,Cardiocentro Ticino Institute的细胞和分子心脏病学实验室;瑞士贝林佐纳EOC转化研究的3个实验室; 4瑞士苏黎世大学医院研究与教育系; 5意大利热那亚大学内科大学内科系内科第一个诊所; 6 Irccs Ospedale Policlinico San Martino Genova - 意大利热那亚的意大利心血管网络; 7瑞士苏黎世大学医院心脏病学大学心脏中心; 8瑞士日内瓦大学医学研究基金会心脏病学系; 9男子健康研究计划:老化和代谢,哈佛医学院,杨百翰和美国马萨诸塞州波士顿的妇女医院;瑞士洛桑大学洛桑大学医院心脏病学10;瑞士; 11心脏病学系,瑞士伯尔尼Inselspital Bern; 12号皇家布隆普顿和哈尔菲尔德医院,帝国学院和国王学院,伦敦,英国
IIIA型粘多糖化病(MPS IIIA)患者缺乏溶酶体酶磺酰酶(SGSH),这对于硫酸乙酰肝素(HS)的降解而言是可重点的。尚未依赖的HS的积累会导致严重的进行性神经变性,目前尚无治疗。在MPS IIIA的小鼠模型中评估了载体腺相关病毒(AAV)RH.10-CAG-SGSH(LYS-SAF302)纠正疾病病理的能力。lys-SAF302以三种不同剂量(8.6e+08、4.1e+10和9.0e+10+10个载体基因组[VG]/动物)注射到尾状pe虫/纹状体/纹状体和thalamus的三种不同剂量(8.6e+08、4.1e+10和9.0e+10和9.0e+10载体基因组[VG]/动物)中施用。lys-SAF302能够依赖于纠正剂量或显着降低HS储存,GM2和GM3神经节蛋白的继发性积累,泛素反应性轴突球体,溶酶体膨胀,溶酶体膨胀以及毒液膨胀在12周和25周后的神经毒素流量。要研究大动物大脑中的SGSH分布,将LYS-SAF302注入了狗的皮层白质(1.0e+12或2.0e+12 Vg/Animal)和cynomolgus猴子(7.2e+11 Vg/an-imal)。在78%(注射后4周)中检测到78%的SGSH酶活性至少高于内源水平的20%(狗)的增加至少高于内源性水平。综上所述,这些数据验证了脑室内AAV的给药,作为实现MPS IIIA中疾病疾病的广泛酶分布和纠正的有前途的方法。
与轴突渗透性相关的参数 - 轴内水交换时间(𝜏I)可能是理解和治疗脱髓鞘病理(例如多发性硬化症)的重要生物标志物。di usion加权MRI(DW-MRI)对渗透性的变化敏感;但是,由于缺乏合并其的一般生物物理模型,因此该参数仍然难以捉摸。基于机器学习的计算模型可以可能用于估计此类参数。最近,第一次使用随机森林(RF)回归器的理论框架表明,这是一种有希望的渗透性估计方法。在这项研究中,我们采用了一种方法,并且在第一次实验中,通过与组织学直接进行比较,对其进行了实验研究,以脱髓鞘。
正常血流和代谢物分布从脑微血管向神经元组织的偏离与年龄相关的神经变性有关。通过空间和时间分布的神经图像数据告知的数学模型已成为重建整个大脑正常和病理氧递送的一致图片的工具。不幸的是,当前的脑血流和氧交换的数学模型的大小过大。由于不完整或生理上不准确的计算域,由于巨大长度尺度差异而导致的数值不稳定性以及与良好网格分辨率下的条件数量恶化相关的收敛问题,他们进一步遭受了边界影响。我们提出的有关血液和氧微灌注模拟的模拟量离散化方案不需要昂贵的网格产生,从而导致其临界氧转移问题的基质大小和带宽大大减少了至关重要的好处。紧凑的问题制定产生快速而稳定的收敛性。此外,通过使用基于图像的脑血管网络合成算法产生非常大的硅皮质微循环复制品可以有效地抑制边界效应,以便灌注模拟的边界与感兴趣的区域相去甚远。在皮质的大量部分上进行了大量模拟,并且具有适度的计算机资源,其特征分辨率向微米尺度降低了。在年轻小鼠和老年小鼠的同类中,通过体内氧灌注数据证明并验证了新方法的可行性和准确性。我们的氧气交换模拟量化了血管附近的陡峭梯度,并指向病理变化,可能导致老年大脑的神经de虫产生。这项研究旨在解释解剖结构之间的机械相互作用以及它们可能如何改变疾病或随着年龄的变化。与年龄相关变化的严格量化具有重大关注,因为它可能有助于寻找痴呆症和阿尔茨海默氏病的成像生物标志物。
摘要目的:用脑部计算机界面系统对运动皮层激活进行神经反馈训练可以增强中风患者的恢复。在这里,我们提出了一种新方法,该方法训练与运动性能相关的静止状态功能连接,而不是与运动相关的激活。方法:使用神经反馈和源功能连通性分析和视觉反馈,将十个健康受试者和一名中风患者在其手运动区域和其他大脑之间受过训练的α波段连贯性。结果:十分之一的健康受试者中有7个能够在一次疗程中增加手运动皮层和其他大脑其他大脑之间的α波段连贯性。慢性中风的患者学会了增强其受影响的原发性运动皮层的α波段连贯性,该病神经皮层在一个月内应用了一个月。连贯性在靶向运动皮层和α频率中特别增加。这种增加与中风后运动功能的临床有意义且持久的改善有关。结论:这些结果提供了概念证明,即对α波段连贯性的神经反馈训练是可行的,并且在行为上是有用的。意义:该研究提供了证据表明α波段在运动学习中的作用,并可能导致新的康复策略。1简介大脑界面(BCI)的技术可以监测大脑活动和生成有关活动模式特定变化的实时输出。这特别显示了有关感觉运动节奏(SMR)的表明。记录的受试者会收到有关与他/她的努力相关的神经活动的反馈,因此可以学会自愿调节大脑活动(Kamiya,1969)。SMR对应于α和β频率(〜8-30 Hz)中感觉运动皮层中神经元基的活性,这被真实或想象中的运动抑制(Arroyo等,1993; Pfurtscheller等人,2006年)。人类自愿调节SMR的能力导致BCI的发展用于运动替代,即控制假体和机器人设备(Galan等,2008; McFarland等,2008)。BCI技术的最新应用包括通过反馈训练大脑模式。在神经居住中,神经反馈的兴趣主要在于它可能改善脑部病变患者恢复的潜力(Birbaumer等,2007; Daly等,2008)。运动康复的神经反馈主要旨在训练SMR调节(Buch等,2008; Broetz等,2010; Caria等,2011; Ramos-Murguiarlday等,2013),因此可以看作是对运动成像训练的支持(Mattia等人(Mattia等,2012)。
在没有全身性钙和磷酸盐失衡的情况下,基底神经节中脑微血管的抽象钙化是原发性家族性脑钙化(PFBC)的标志,这是一种罕见的神经退行性疾病。在钠依赖性磷酸磷酸转运蛋白2(SLC20A2),异形和多层逆转录病毒受体1(XPR1),血小板衍生的生长因子B(PDGFB),血小板生长因子受体β(PDGFRB),脑质量发生的gylasise(PDGFB)的基因(pDGFB),脑料beta和脑电图调节(XPR1)的反应(PDGFB)调节gycose(pDGFB),已知分子2(JAM2)引起PFBC。 XPR1的功能丧失突变是Meta-Zoans中唯一已知的无机磷酸盐出口剂,引起了主要遗传的PFBC,但在2015年首次报道,但到目前为止,在大脑中,尚无研究的研究是否尚未解决一种功能等位基因的损失,是否导致一种常用的生物体(一种对人类疾病模拟人类疾病的常用生物体)的病理学改变。 在这里我们表明,用于XPR1的小鼠(XPR1 WT/LACZ)的杂合子存在脑脊液中的无机磷酸盐水平,以及丘脑中血管钙化的年龄和性别依赖性生长。 血管钙化被血管基底膜包围,位于平滑肌层的小动脉。 与先前特征的PFBC小鼠模型相似,XPR1 WT/LACZ小鼠中的血管钙化含有骨基质蛋白,并被反应性星形胶质细胞和小胶质细胞包围。 但是,小胶质细胞激活不仅限于钙化血管,而是显示出广泛的存在。 除了血管钙化外,我们还观察到血管在钠依赖性磷酸磷酸转运蛋白2(SLC20A2),异形和多层逆转录病毒受体1(XPR1),血小板衍生的生长因子B(PDGFB),血小板生长因子受体β(PDGFRB),脑质量发生的gylasise(PDGFB)的基因(pDGFB),脑料beta和脑电图调节(XPR1)的反应(PDGFB)调节gycose(pDGFB),已知分子2(JAM2)引起PFBC。XPR1的功能丧失突变是Meta-Zoans中唯一已知的无机磷酸盐出口剂,引起了主要遗传的PFBC,但在2015年首次报道,但到目前为止,在大脑中,尚无研究的研究是否尚未解决一种功能等位基因的损失,是否导致一种常用的生物体(一种对人类疾病模拟人类疾病的常用生物体)的病理学改变。在这里我们表明,用于XPR1的小鼠(XPR1 WT/LACZ)的杂合子存在脑脊液中的无机磷酸盐水平,以及丘脑中血管钙化的年龄和性别依赖性生长。血管钙化被血管基底膜包围,位于平滑肌层的小动脉。与先前特征的PFBC小鼠模型相似,XPR1 WT/LACZ小鼠中的血管钙化含有骨基质蛋白,并被反应性星形胶质细胞和小胶质细胞包围。但是,小胶质细胞激活不仅限于钙化血管,而是显示出广泛的存在。除了血管钙化外,我们还观察到血管