图 2. (a) 造成整体延迟的四个主要因素。(b) 网络延迟。(c)-(d) 显示了四个尖峰。深色阴影表示尖峰发生的时间,浅色阴影表示尖峰可用于 DecoderProcess 的时间。请注意,尖峰 4 在 t curr 之后处于可用形式。(c) 当 ∆ t delay > 0 时的时间箱。(d) 当 ∆ t delay = 0 时的时间箱。(e) 由于使用示例四极管估计 p(x, m) 而导致的总体延迟分布。(f) p(x, m) 估计延迟作为编码模型中尖峰数量的函数。(g) 后验分布更新引起的计算延迟。
电图尖峰振幅 - 反映传播动作电位上冲线的繁殖动作电位上冲线幅度明显小得多。房间协议之间的分化之间也存在显着差异。三种心房方案产生的单层具有尖峰幅度,聚集在<1 mV&1-5 mV范围内,但只有心房(D1RA)方法产生的尖峰幅度超过8 mV(图2e)。在心房单层中,尖峰幅度幅度与校正时或校正的FPD值之间没有相关性。产生心房(D1RA)最高尖峰幅度的区别在<0.6秒<0.6秒且校正的FPD值<150 ms,表明有可能产生上层心房样
摘要 — 实时尖峰分类和处理对于闭环脑机接口和神经假体至关重要。具有数百个电极的高密度多电极阵列的最新发展使得能够同时记录来自大量神经元的尖峰。然而,高通道数对实时尖峰分类硬件的数据传输带宽和计算复杂性提出了严格的要求。因此,有必要开发一种专门的实时硬件,该硬件可以在高吞吐量下动态地对神经尖峰进行分类,同时消耗最少的功率。在这里,我们介绍了一种实时、低延迟的尖峰分类处理器,它利用高密度 CuO x 电阻交叉开关以大规模并行方式实现内存尖峰分类。我们开发了一种与 CMOS BEOL 集成兼容的制造工艺。我们广泛描述了 CuO x 存储设备的开关特性和统计变化。为了使用交叉开关阵列实现尖峰分类,我们开发了一种基于模板匹配的尖峰分类算法,该算法可以直接映射到 RRAM 交叉开关上。通过使用合成和体内细胞外脉冲记录,我们通过实验证明了高准确度的节能脉冲分类。与基于 FPGA 和微控制器的其他硬件实现相比,我们的神经形态接口在实时脉冲分类的面积(减少约 1000 倍面积)、功率(减少约 200 倍功率)和延迟(对 100 个通道进行分类的延迟为 4.8μs)方面均有显著改善。
摘要 目的:对 Neuropixels 等多通道和高通道神经探针记录的神经尖峰数据进行分类,尤其是实时分类,仍然是一项重大的技术挑战。大多数神经尖峰分类算法侧重于事后对神经尖峰进行高分类精度——但这些算法通常无法减少处理延迟以实现快速分类,甚至可能是实时分类。 方法:我们在此报告我们的图形网络多通道排序 (GEMsort) 算法,该算法主要基于图形网络,可以对多个神经记录通道进行快速神经尖峰分类。这是通过两项创新实现的:在 GEMsort 中,通过仅选择任何通道中幅度最高的神经尖峰进行后续处理,从多个通道记录的重复神经尖峰被从重复通道中消除。此外,记录代表性神经尖峰的通道被用作附加特征,以区分从具有相似时间特征的不同神经元记录的神经尖峰。 主要结果:合成和实验记录的多通道神经记录用于评估 GEMsort 的分类性能。 GEMsort 的排序结果还与其他两种最先进的排序算法(Kilosort 和 Mountainsort)在排序时间和排序一致性方面进行了比较。意义:GEMsort 可以快速对神经脉冲进行排序,非常适合用数字电路实现,以实现高处理速度和通道可扩展性。
实时尖峰分类和处理对于闭环脑机接口和神经假体至关重要。具有数百个电极的高密度多电极阵列的最新发展使得能够同时记录来自大量神经元的尖峰。然而,高通道数对实时尖峰分类硬件的数据传输带宽和计算复杂性提出了严格的要求。因此,有必要开发一种专门的实时硬件,该硬件可以在高吞吐量下动态分类神经尖峰,同时消耗最少的功率。在这里,我们介绍了一种实时、低延迟尖峰分类处理器,它利用高密度 CuO x 电阻交叉开关以大规模并行方式实现内存尖峰分类。我们开发了一种与 CMOS BEOL 集成兼容的制造工艺。我们广泛描述了 CuO x 存储设备的开关特性和统计变化。为了使用交叉开关阵列实现尖峰分类,我们开发了一种基于模板匹配的尖峰分类算法,该算法可以直接映射到 RRAM 交叉开关上。通过使用合成和体内细胞外脉冲记录,我们通过实验证明了高准确度的节能脉冲分类。与基于 FPGA 和微控制器的其他硬件实现相比,我们的神经形态接口在实时脉冲分类的面积(减少约 1000 倍面积)、功率(减少约 200 倍功率)和延迟(对 100 个通道进行分类的延迟为 4.8μs)方面均有显著改进。
实时尖峰分类和处理对于闭环脑机接口和神经假体至关重要。具有数百个电极的高密度多电极阵列的最新发展使得能够同时记录来自大量神经元的尖峰。然而,高通道数对实时尖峰分类硬件的数据传输带宽和计算复杂性提出了严格的要求。因此,有必要开发一种专门的实时硬件,该硬件可以在高吞吐量下动态分类神经尖峰,同时消耗最少的功率。在这里,我们介绍了一种实时、低延迟尖峰分类处理器,它利用高密度 CuO x 电阻交叉开关以大规模并行方式实现内存尖峰分类。我们开发了一种与 CMOS BEOL 集成兼容的制造工艺。我们广泛描述了 CuO x 存储设备的开关特性和统计变化。为了使用交叉开关阵列实现尖峰分类,我们开发了一种基于模板匹配的尖峰分类算法,该算法可以直接映射到 RRAM 交叉开关上。通过使用合成和体内细胞外脉冲记录,我们通过实验证明了高准确度的节能脉冲分类。与基于 FPGA 和微控制器的其他硬件实现相比,我们的神经形态接口在实时脉冲分类的面积(减少约 1000 倍面积)、功率(减少约 200 倍功率)和延迟(对 100 个通道进行分类的延迟为 4.8μs)方面均有显著改进。
在大脑中,信号的事件驱动性质和以尖峰信号形式编码的信息允许以很少的能量执行巨大的数据处理过程。因此,神经网络研究正在发展为接近生物学模型。很长一段时间以来,将通过基于尖峰的计算模型来实现神经网络的未来。在尖峰神经网络中,信息在尖峰信号中编码。将信息作为尖峰列车保留,可以像标准的计算机体系结构一样以二进制形式表示信息,但以时间依赖的方式表示。这降低了信息的传输和处理成本。出于所有这些原因,峰值计算模型的计算和能量效率高于前几代。
背景:一种可靠的生物标志物来识别负责产生癫痫发作的皮质组织以指导癫痫的预后和治疗。组合的尖峰波纹事件是癫痫组织的有前途的生物标志物,目前需要专家审查才能准确识别。本专家审查是耗时且主观的,限制了可重复性和高通量应用程序。新方法:为了解决此限制,我们开发了一种用于尖峰纹波检测的完全自动化方法。该方法由一个卷积神经网络组成,该卷积神经网络训练以计算频谱图像包含尖峰纹波的概率。结果:我们在专家标记的数据上验证了所提出的尖峰纹波检测器,并表明该检测器准确地分离了具有低癫痫发作风险的受试者。与现有方法的比较:所提出的方法以及需要手动验证候选尖峰纹波事件的现有方法。引入完全自动化的方法可降低主观性,并增加此癫痫生物标志物的严格性和可重复性。结论:我们介绍并验证了完全自动的尖峰纹波探测器,以支持在临床和翻译工作中使用该Epilepsy Biomarker的利用。
关键字; UTBB 28NM FD-SOI,Analog SNN,Analog Envm,Envm Integration。2。简介基于新兴的非易失性记忆(ENKM)横杆的尖峰神经网络(SNN)是有希望的内存计算组件,这些组件具有出色的能力,可在边缘低功率人工智能。然而,Envms突触阵列与28nm超薄体和掩埋的氧化物完全耗尽的硅在绝缘子中(UTBB-FDSOI)技术节点的结合是一个挑战。在模拟尖峰神经网络(SNN)中,输入神经元通过单位驱动器透射器(1T1R)突触与输出神经元互连,并通过突触量通过突触转换为电流的电压尖峰来完成计算[1]。神经元会积聚尖峰到预定义的阈值,然后产生输出尖峰。神经元能力区分和容纳大量突触和输入尖峰的能力直接与直至神经元的射击阈值的电压摆动直接相关。这主要取决于膜电容,突触电荷的净数和低功率神经元的阈值[2]。
尖峰神经形态系统已被引入,作为能量效能高峰神经网络(SNNS)执行的有前途的平台。SNN除了将变体时间尺度纳入其计算模型外,还结合了神经元和突触状态。由于这些网络中的每个神经元都连接到许多其他网络,因此需要高带宽。此外,由于SPIKE时间用于编码SNN中的信息,因此还需要精确的通信延迟,尽管当SNN被视为一个整体时,SNN对某些限制的尖峰延迟变化具有耐受性。提出了两维数据包切换的芯片网络网络,作为一种解决方案,以提供大规模尖峰的神经网络中可扩展的互连织物。3D-ICS也引起了很多关注,作为解决互连瓶颈的潜在解决方案。结合这两种新兴技术为IC设计提供了新的地平线,以满足新兴AI应用中低功率和小占地面积的高要求。,尽管容忍度是生物系统的自然特征,但将许多计算和记忆单元整合到神经形态芯片中遇到了可靠性问题,其中有缺陷的部分会影响整个系统的性能。本文介绍了R-NASH-A可靠的三维数字神经形态系统的设计和模拟,该系统明确地针对3D-ICS生物学大脑的三维结构,在网络中,网络中的信息以稀疏的尖峰时间和学习为基于局部上的上升式触发性依赖性依赖性依赖性 - 依赖性依赖性统计。我们的平台可实现尖峰网络的高集成密度和小尖峰延迟,并具有可扩展设计。r-nash是一种基于通过透过的VIA技术的设计,可促进基于Chip网络的聚类神经元上的尖峰神经网络实现。我们提供了与主机CPU的内存接口,可以在线培训和推断尖峰神经网络的推断。此外,R-NASH通过优雅的性能退化支持故障恢复。