尖峰神经形态系统已被引入,作为能量效能高峰神经网络(SNNS)执行的有前途的平台。SNN除了将变体时间尺度纳入其计算模型外,还结合了神经元和突触状态。由于这些网络中的每个神经元都连接到许多其他网络,因此需要高带宽。此外,由于SPIKE时间用于编码SNN中的信息,因此还需要精确的通信延迟,尽管当SNN被视为一个整体时,SNN对某些限制的尖峰延迟变化具有耐受性。提出了两维数据包切换的芯片网络网络,作为一种解决方案,以提供大规模尖峰的神经网络中可扩展的互连织物。3D-ICS也引起了很多关注,作为解决互连瓶颈的潜在解决方案。结合这两种新兴技术为IC设计提供了新的地平线,以满足新兴AI应用中低功率和小占地面积的高要求。,尽管容忍度是生物系统的自然特征,但将许多计算和记忆单元整合到神经形态芯片中遇到了可靠性问题,其中有缺陷的部分会影响整个系统的性能。本文介绍了R-NASH-A可靠的三维数字神经形态系统的设计和模拟,该系统明确地针对3D-ICS生物学大脑的三维结构,在网络中,网络中的信息以稀疏的尖峰时间和学习为基于局部上的上升式触发性依赖性依赖性依赖性 - 依赖性依赖性统计。我们的平台可实现尖峰网络的高集成密度和小尖峰延迟,并具有可扩展设计。r-nash是一种基于通过透过的VIA技术的设计,可促进基于Chip网络的聚类神经元上的尖峰神经网络实现。我们提供了与主机CPU的内存接口,可以在线培训和推断尖峰神经网络的推断。此外,R-NASH通过优雅的性能退化支持故障恢复。
主要关键词