Loading...
机构名称:
¥ 1.0

情感脑部计算机中解码的人类情绪相互交流,由于脑电图(EEG)信号的受试者间变化能力,遭受了重大挫折。现有的ap-praches通常需要收集每个新主题的大量脑电图数据,这些数据非常耗时,用户体验差。为了解决这个问题,我们将脑电图指定为每个主题的私人组件,并共享所有主题的情感组成部分。根据此表示的部分,我们提出了一种用于处理受试者间可变性的插件适应方法。在训练阶段,主题不变的情感表示和源主题的私人组成部分由共享的编码器和私人编码者分别捕获。此外,我们在共享分区和受试者的单个分类器上建立了一个情感分类,以结合这两个部分。在校准阶段,该模型仅需要来自传入目标对象的未标记的脑电图数据来对其私人组件进行建模。因此,除了共享的表演分类外,我们还有另一个管道来通过私人组合的相似性来利用源主题的知识。在测试阶段,我们将共享情绪分类器的预测与通过相似权重调制后的单个分类器的聚合物的预测。在种子数据集中进行的实验性调查表明,我们的模型在一分钟内的校准时间非常短,同时保持了识别精度,所有这些都使人们的情绪更具概括性和可行性。

交叉主题EEG- ...

交叉主题EEG- ...PDF文件第1页

交叉主题EEG- ...PDF文件第2页

交叉主题EEG- ...PDF文件第3页

交叉主题EEG- ...PDF文件第4页

交叉主题EEG- ...PDF文件第5页

相关文件推荐

2020 年
¥1.0
2021 年
¥2.0
2021 年
¥1.0
2022 年
¥2.0