摘要 — 目的:脑电信号被记录为多维数据集。我们提出了一个基于增强协方差的新框架,该框架源自自回归模型,以改进运动想象分类。方法:从自回归模型可以推导出 Yule-Walker 方程,该方程显示了对称正定矩阵的出现:增强协方差矩阵。对协方差矩阵进行分类的最新技术基于黎曼几何。因此,一个相当自然的想法是将这种基于黎曼几何的方法应用于这些增强协方差矩阵。创建增强协方差矩阵的方法与 Takens 为动态系统提出的延迟嵌入定理有着自然的联系。这种嵌入方法基于两个参数的知识:延迟和嵌入维度,分别与自回归模型的滞后和阶数有关。除了标准网格搜索之外,这种方法还提供了计算超参数的新方法。结果:增强协方差矩阵的 ACM 性能优于任何最先进的方法。我们将使用 MOABB 框架在多个数据集和多个主题上测试我们的方法,同时使用会话内和跨会话评估。结论:结果的改善是由于增强协方差矩阵不仅包含空间信息,还包含时间信息。因此,它通过嵌入过程包含有关信号非线性分量的信息,从而允许利用动态系统算法。意义:这些结果扩展了基于黎曼距离的分类算法的概念和结果。
主要关键词