摘要 交通与车辆仿真往往是单独开发的,但车辆性能受交通条件影响很大,在真实道路条件下进行交通与车辆联合仿真可以半真实地反映车辆的性能,并考虑交通条件的影响。本文提出一种将交通与车辆仿真结合起来的方法,分别通过城市交通仿真(SUMO)和GT-Suite软件实现。本文研究了道路等级和车速对燃油经济性和尾气排放的敏感性,分析了真实道路上的车辆燃油消耗和常规尾气排放,量化了交通事故和拥堵对燃油消耗和尾气排放的影响。结果表明,氮氧化物(NO x )和烟尘排放与燃油消耗率一致,受车辆加速度主导,而道路等级会加剧这种影响。事故造成的燃油损失在0.015-0.023 kg范围内,具体取决于事故的严重程度。与180 辆/小时车流量相比,900 和1800 辆/小时车流量情况下的燃油消耗量分别从1.199 千克增加到1.312 千克和1.559 千克。
虽然由于日益严格的尾气排放标准,过去几十年道路交通产生的颗粒物总量有所减少,但新出现的证据表明,轮胎、刹车和路面的磨损以及道路尘埃的悬浮也会产生颗粒物。人们对这些“非尾气”来源产生的颗粒物的了解不如尾气排放产生的颗粒物那么深入,因此解决这些问题的政策选择也较少。重要的是,提高现有排放标准的严格程度并不能解决非尾气颗粒物排放问题。因此,预计未来几年几乎所有道路交通产生的颗粒物都将来自非尾气排放源。鉴于颗粒物对公众健康的重大负面影响,政策制定者必须考虑如何管理这些排放。
虽然由于日益严格的尾气排放标准,道路交通产生的颗粒物总量在过去几十年有所减少,但新出现的证据表明,轮胎、刹车和路面的磨损以及道路灰尘的再悬浮也会产生颗粒物。人们对这些“非尾气”来源产生的颗粒物的了解程度不如尾气排放产生的颗粒物,因此解决这些问题的政策选择也较少。重要的是,非尾气颗粒物排放不会通过提高现有排放标准的严格程度来解决。因此,预计未来几年几乎所有道路交通产生的颗粒物都将来自非尾气排放源。鉴于颗粒物对公众健康的重大负面影响,政策制定者有责任考虑如何管理这些排放。
摘要 减少航运排放的需要迫在眉睫。未来的潜在燃料候选包括氢气和甲醇。本研究试图通过采用自下而上的方法来量化燃料消耗和排放,对这两种燃料类型进行公平的比较。以一艘液化天然气运输船进行的 10,755 海里的航程作为案例研究。为氢燃料电池能源系统和重整甲醇燃料电池能源系统开发了模型。模拟计算了每种方案的燃料需求和尾气排放量。然而,由于氢气和甲醇都不是自然产生的,因此还应考虑生产这些燃料所需的能量。已经模拟了三种生产方法:带电解的风力涡轮机;带电解的电网供应;蒸汽甲烷重整。此后,计算了每种燃料方案的总生命周期排放量并将其与现有船舶进行比较。通常,这被称为油井到尾流的排放,但对于绿色燃料,风电场到尾流可能更合适。结果表明,改用甲醇最多可减少 8.3% 的尾气排放和 18.8% 的风力发电厂尾气排放,但前提是燃料完全由可再生能源生产。液氢燃料电池能源系统产生的风力发电厂尾气排放为零,所需的可再生能源比甲醇少 33.3%。术语
本报告介绍了全球燃料经济性倡议组织关于轻型汽车销售的两年一次的基准报告的最新更新。该报告跟踪了新型轻型汽车的燃油经济性进展,基于丰富的数据集提供了最新见解,该数据集涵盖了全球约 85-90% 的轻型汽车销售,时间跨度从 2005 年到 2019 年。它利用这些数据和 IEA 模型为政策制定者提供信息,让他们了解需要采取哪些政策来使轻型汽车效率改进的步伐与气候目标保持一致。为了为全球燃料经济性倡议组织 (GFEI) 的目标提供信息,这些目标超越了尾气排放,本报告将分析范围从额定燃油经济性和尾气排放扩展到考虑不同轻型汽车燃料动力系统选项在从油井到车轮的基础上的当前和潜在性能;量化生产、运输和交付传统运输燃料(源自石油和天然气)以及电力和氢气等能源载体所产生的温室气体排放。
减少尾气排放:纯电动汽车不产生温室气体尾气排放。插电式混合动力电动汽车的排放量远低于汽油发动机。 生命周期排放更少:电动汽车的生命周期排放量比普通汽油动力汽车少 80%(彭比纳研究所)。 燃料成本低:电动汽车的燃料成本大约比汽油汽车低 5 倍。目前,低陆平原地区的一些市政当局和私营企业为电动汽车提供免费公共充电,从而进一步节省燃料成本。 维护成本更低:电动汽车只有 18 到 20 个活动部件,而汽油动力汽车则有 2000 多个,因此所需的维护成本要少得多。 健康益处:随着我们转向电动汽车,汽车尾气造成的空气污染将减少。电动汽车也更安静,这意味着噪音污染更少。 通勤速度更快:拥有电动汽车的 BC 居民可以通过展示电动汽车标牌进入高乘载车辆 (HOV) 车道。
每年,我们都会在整个网络中安装可持续排水系统。这不仅包括有助于减少和/或减缓流入伦敦排水网络的雨水量的措施,还包括基于自然的解决方案,例如雨水花园、种植植被的屋顶和湿地。基于自然的解决方案有几个优点,例如支持生物多样性和提高城市空间的视觉吸引力。绿色且适应良好的道路网络有助于鼓励人们积极出行,符合我们的“健康街道”方法。它还可以帮助减少尾气排放和刹车磨损造成的道路径流污染
地面运输部门有能力为减少英国温室气体排放做出重大贡献。全行业迅速向零尾气排放车辆过渡,增加低碳燃料的使用,以及提高汽油和柴油车辆的效率,可以为减少排放做出重大贡献。如果人们也改变出行习惯,减少驾驶,使用更清洁的交通方式,到 2035 年,地面运输排放量可能会下降 70%。8 零排放技术的潜在贡献已经开始实现。尽管总车辆行驶里程增加,但 2023 年地面运输排放量略有下降,这是因为到 2024 年 1 月,道路上有 100 万辆电动汽车 (EV)(总车队为 3360 万辆)。9
SCR 系统使用水基尿素溶液 (AdBlue®) 作为氨源来中和柴油发动机尾气排放中的氮氧化物。在 SCR 系统中,氨 (NH 3 ) 选择性地与氮氧化物发生反应,生成无害的氮和水。为保证这些化学物质从储罐安全输送到排气系统,SCR 技术需要基于专门设计的弹性体材料的零件。这些材料会暴露于 AdBlue® 中并受到其侵蚀。选择合适的弹性体材料来耐受腐蚀性尿素溶液对弹性体来说是一项相当大的技术挑战。这同样适用于 AdBlue® 应用中经常需要的弹性体与金属的粘合。凭借其卓越的技术和基于 EPDM 和 HNBR 的顶级弹性体材料,德特威勒应对了这一挑战。
中型和重型 (MHD) 货运车辆是美国交通脱碳和减少交通相关温室气体 (GHG) 排放的首要任务。这些车辆在美国经济中发挥着至关重要的作用,但由于它们在运输国家货物时需要进行关键的高里程运输,因此会排放大量温室气体和标准污染物,而这些污染物通常出现在最脆弱的社区。幸运的是,现有和不断发展的技术可以消除尾气排放,并显著减少 MHD 车辆的总体碳足迹。目前,40 多家原始设备制造商 (OEM) 提供 160 多种型号的零排放卡车 (ZET),截至 2023 年 6 月,美国已部署了超过 17,500 辆 ZET(图 ES-1)。1