抽象虚拟现实(VR)是一项允许用户体验模拟真实或虚构场景的多感觉和交互式环境的技术。仍然辩论了不同的VR沉浸式技术神学对心理工作量(MWL)的影响,即执行任务所需的资源数量;但是,从未利用脑电图在这种情况下的潜在作用。本文旨在调查在VR环境中对MWL进行认知任务的影响,这是通过使用多模式的方法进行的,其特征在于以不同程度的沉浸式来进行,这些方法通过生理EEG测量对MWL进行了良好评估的主观评估。提出了基于N-BACK测试的认知任务,以比较使用头部安装显示器(HMD)或桌面计算机展示Stim uli的特定裤子的性能和MWL。任务具有四个不同的复杂度(N¼1或2具有视觉或视觉和听觉刺激)。二十七名健康参与者都参加了这项研究,并在两种情况下都执行了任务。EEG数据和NASA任务负荷指数(NASA-TLX)分别用于评估客观和主观MWL的变化。 错误率(ER)和反应时间(RTS)也针对每个条件和任务水平进行了COL。 任务水平在两种情况下都对MWL产生了重大影响,增加了次级措施和降低性能。 EEG MWL指数显示出显着增加,特别是与休息相比。 不同程度的沉浸式均未显示个人的表现和MWL的显着差异,如主观评分所估计。EEG数据和NASA任务负荷指数(NASA-TLX)分别用于评估客观和主观MWL的变化。错误率(ER)和反应时间(RTS)也针对每个条件和任务水平进行了COL。任务水平在两种情况下都对MWL产生了重大影响,增加了次级措施和降低性能。EEG MWL指数显示出显着增加,特别是与休息相比。 不同程度的沉浸式均未显示个人的表现和MWL的显着差异,如主观评分所估计。EEG MWL指数显示出显着增加,特别是与休息相比。不同程度的沉浸式均未显示个人的表现和MWL的显着差异,如主观评分所估计。但是,在大多数情况下,HMD降低了EEG衍生的MWL,表明较低的认知负载。总而言之,HMD可能会减少某些任务的认知负荷。如脑电图MWL指数所示,MWL的降低水平可能对基于VR的应用程序的设计和未来评估有影响。
抽象虚拟现实(VR)是一项允许用户体验模拟真实或虚构场景的多感觉和交互式环境的技术。仍然辩论了不同的VR沉浸式技术神学对心理工作量(MWL)的影响,即执行任务所需的资源数量;但是,从未利用脑电图在这种情况下的潜在作用。本文旨在调查在VR环境中对MWL进行认知任务的影响,这是通过使用多模式的方法进行的,其特征在于以不同程度的沉浸式来进行,这些方法通过生理EEG测量对MWL进行了良好评估的主观评估。提出了基于N-BACK测试的认知任务,以比较使用头部安装显示器(HMD)或桌面计算机展示Stim uli的特定裤子的性能和MWL。任务具有四个不同的复杂度(N¼1或2具有视觉或视觉和听觉刺激)。二十七名健康参与者都参加了这项研究,并在两种情况下都执行了任务。EEG数据和NASA任务负荷指数(NASA-TLX)分别用于评估客观和主观MWL的变化。 错误率(ER)和反应时间(RTS)也针对每个条件和任务水平进行了COL。 任务水平在两种情况下都对MWL产生了重大影响,增加了次级措施和降低性能。 EEG MWL指数显示出显着增加,特别是与休息相比。 不同程度的沉浸式均未显示个人的表现和MWL的显着差异,如主观评分所估计。EEG数据和NASA任务负荷指数(NASA-TLX)分别用于评估客观和主观MWL的变化。错误率(ER)和反应时间(RTS)也针对每个条件和任务水平进行了COL。任务水平在两种情况下都对MWL产生了重大影响,增加了次级措施和降低性能。EEG MWL指数显示出显着增加,特别是与休息相比。 不同程度的沉浸式均未显示个人的表现和MWL的显着差异,如主观评分所估计。EEG MWL指数显示出显着增加,特别是与休息相比。不同程度的沉浸式均未显示个人的表现和MWL的显着差异,如主观评分所估计。但是,在大多数情况下,HMD降低了EEG衍生的MWL,表明较低的认知负载。总而言之,HMD可能会减少某些任务的认知负担。如脑电图MWL指数所示,MWL的降低水平可能对基于VR的应用程序的设计和未来评估有影响。
今天的网络包括在混合多云环境中运行的应用程序,该应用程序使用裸机,虚拟化以及基于云的工作负载。在这种环境中,关键挑战是改善应用程序和数据安全性,而不会损害敏捷性。Cisco Secure Workload通过使安全性更接近应用程序并根据应用程序行为调整安全姿势来提供全面的工作负载保护。安全工作负载通过使用高级机器学习和行为分析技术来实现此裁缝。它提供了一个现成的解决方案来支持以下安全用例:
druvaistheIndustry'sleadingsaasplatforffordfordataSecurity和Theonlyvendor,以确保由1000万美元保证支持的最常见数据风险进行数据保护。Druva的备份和恢复的创新方法已通过数以千计的数据被保护,保护和利用,并通过数以千计的数据改变了Enterprises.thedruvadatasecurityCloudeliminateStheneedForCostlyHardware,软件和服务通过简单的,AndagileCloud-NativearchItecturethat deliversaunMatchedSecurity,ableabilitoysage andscale andscale.visit andscale.visit druva.com和fackeriat druva.com和faceplolluson linkedin,twitter,twitter和facebook。
2个预期的受众本文档旨在使用Oracle Systems工程师,第三方系统集成商,Oracle Enterprise客户和合作伙伴以及Oracle Enterprise Session Border Contrenter(SBC)的最终用户。假定读者熟悉Oracle Enterprise Session Border Controler Controller平台以及RingCentral Byoc和CC平台的基本操作。3文档概述此Oracle技术应用程序注释概述了如何将Oracle SBC与RingCentral Byoc和RingCentral Cloud Connector(CC)配置为Interwork。本文档中包含的解决方案已使用Oracle Communication SBC使用软件版本OS930 GA(SCZ9.3.0补丁)进行测试,请注意,我们已经在此应用程序注释中介绍了与RingCentral Byoc的Oracle SBC集成和RingCentral CC中的RingCentral Byoc,除了更改CC平台的会话代理IP或FQDN外,该config均保持不变。有关此主题的更多帮助,请与您的RingCentral代表联系。请注意,本文档中给出的IP地址,FQDN和配置名称和详细信息仅用于参考目的。这些相同的详细信息不能在客户配置中使用。本文档的最终用户可以根据其网络要求使用配置详细信息。客户可以根据其网络体系结构需求为这些部分配置所有可公开的IPS。4关于RingCentral Byoc RingCentral提供软件作为服务,客户提供自己的本地电信运营商服务(“带您自己的运营商”或“ Byoc”)。BYOC允许客户通过将其现有的本地语音载体连接到Cloud PBX功能(包括视频会议,团队消息传递和文件共享服务)来接收RINGEX的云PBX功能。所有往返于公共交换电话网络(“ PSTN”)的电话通过客户购买和拥有的网关(“网关”),从本地语音运营商的网络上行驶。
[5] PR Newswire,“金融服务中的私人和公共云市场将从2024 - 2028年增长10064.3亿美元,由无限储存和大数据需求驱动,AI对Trends-Technavio的影响,” 2025年。[在线]。Available: https://www.prnewswire.com/news-releases/private-and-public-cloud-market-in- financial-services-to-grow-by-usd-106-43-billion-from-2024-2028--driven-by- unlimited-storage-and-big-data-demand-ais-impact-on-trends--technavio- 302366176.html
# ........................................................................................................................................................... 35 A ........................................................................................................................................................... 36 B ........................................................................................................................................................... 39 C ........................................................................................................................................................... 41 D ........................................................................................................................................................... 44 E ........................................................................................................................................................... 48 F ........................................................................................................................................................... 50 G ........................................................................................................................................................... 52 H ........................................................................................................................................................... 53 I ........................................................................................................................................................... 54 L ........................................................................................................................................................... 56 M ........................................................................................................................................................... 58 O ........................................................................................................................................................... 62 P ........................................................................................................................................................... 64 Q ........................................................................................................................................................... 67 R ........................................................................................................................................................... 67 S ........................................................................................................................................................... 70 目录 ................................................................................................................................................................ 74 U ................................................................................................................................................................ 75 V ................................................................................................................................................................ 76 W ................................................................................................................................................................ 76 Z ................................................................................................................................................................ 77
脑计算机界面(BCIS)可以分为两种主要类型:主动和被动BCI(Clerc等人2016)。当系统使用用户非自愿生成的信号时,BCI可以被动。更具体地说,这种类型的BCI经常用于评估执行不同心理需求的各种任务的用户的心理工作量,尤其是脑电图(EEG)(EEG)(Wang等人。2015,Adryou等。2018,Shalchy等。 2020)。 在大多数情况下,这些系统是使用分类器构建的,该分类器将大脑信号分为不同类别。 这取决于事先收集了标记的数据。 但是,这些系统通常是在火车和测试集都具有已知标签的实验室环境中开发的。 为神经经济学的2021会议组织的“大挑战:被动BCI Hackathon”可以通过被动BCI的真实情况来挑战研究人员:从看不见的会话中分类数据,并掩盖了标签,以防止在测试集中进行任何细微的调谐。 为此挑战提供的数据集(Hinss等人 2021)由15个参与者的脑电图记录组成,这些参与者在3个不同的会议中进行了3个不同的会议,由NASA开发的多属性任务电池II(MATB-II)。 每个会话都在不同的困难的块中分解:简单,中和困难。 提供的数据包括来自这些块的2秒钟(采样频率为250 Hz),每个会话总共447个时代和每个参与者。2018,Shalchy等。2020)。在大多数情况下,这些系统是使用分类器构建的,该分类器将大脑信号分为不同类别。这取决于事先收集了标记的数据。但是,这些系统通常是在火车和测试集都具有已知标签的实验室环境中开发的。为神经经济学的2021会议组织的“大挑战:被动BCI Hackathon”可以通过被动BCI的真实情况来挑战研究人员:从看不见的会话中分类数据,并掩盖了标签,以防止在测试集中进行任何细微的调谐。为此挑战提供的数据集(Hinss等人2021)由15个参与者的脑电图记录组成,这些参与者在3个不同的会议中进行了3个不同的会议,由NASA开发的多属性任务电池II(MATB-II)。每个会话都在不同的困难的块中分解:简单,中和困难。提供的数据包括来自这些块的2秒钟(采样频率为250 Hz),每个会话总共447个时代和每个参与者。难度标签仅在两个初次会议上提供。
Migration considerations.....................................208 Customization considerations............................ 209 Migration strategies.............................................209 Installation and verification................................. 212 Parallel testing......................................................212 Migrating an end-to-end with fault tolerance capabilities network.............................................213 Migrating DB2报告...............................................任务....................................................................................................................... 217迁移动作...................................................................................
摘要 — 近年来深度学习 (DL) 模型的爆炸式增长使得人们迫切需要在 GPU 集群中对混合并行分布式深度学习训练 (DDLwMP) 进行高效的作业调度。本文提出了一种自适应最短剩余处理时间优先 (A-SRPT) 调度算法,这是一种新颖的预测辅助在线调度方法,旨在缓解与 DL 集群调度相关的挑战。通过将每个作业建模为与异构深度神经网络 (DNN) 模型及其相关的分布式训练配置相对应的图,A-SRPT 策略性地将作业分配给可用的 GPU,从而最大限度地减少服务器间的通信开销。观察到大多数 DDLwMP 作业会重复出现,A-SRPT 结合随机森林回归模型来预测训练迭代。至关重要的是,A-SRPT 将复杂的调度问题映射到单机实例中,该实例通过抢占式“最短剩余处理时间优先”策略得到最佳解决。该优化解决方案可作为 GPU 集群内实际作业调度的指南,从而实现理论上可证明的竞争性调度效率。我们进行了广泛的真实测试平台和模拟实验来验证我们提出的算法。