急性呼吸窘迫综合征 (ARDS) 给医疗保健系统带来了沉重的负担,美国每年约有 20 万例确诊病例。ARDS 患者患有严重的难治性低氧血症、肺泡毛细血管屏障功能障碍、表面活性物质功能受损以及炎症途径异常上调,导致重症监护病房入院、住院时间延长和伤残调整生命年增加。目前,尚无治愈 ARDS 的方法或 FDA 批准的治疗方法。这项工作描述了基于工程化细胞外囊泡 (eEV) 的纳米载体的实现,用于将抗炎有效载荷以非病毒方式定向递送到发炎/受伤的肺部。结果表明,表面活性蛋白 A (SPA) 功能化的 IL-4 和 IL-10 负载 eEV 能够在体外和体内促进肺内滞留并减少炎症。早在接受 eEVs 治疗后 6 小时内,就观察到组织损伤、促炎细胞因子分泌、巨噬细胞活化、富含蛋白质的液体流入和中性粒细胞渗入肺泡空间的显著减弱。此外,代谢组学分析表明,eEV 治疗会导致发炎肺部代谢谱发生显著变化,从而驱动关键抗炎代谢物的分泌。总之,这些结果证实了源自真皮成纤维细胞的 eEVs 有可能通过非病毒传递抗炎基因/转录本来减少 ARDS 期间的炎症、组织损伤和损伤的发生率/进展。
摘要。– 目的:金黄色葡萄球菌引起的中毒性休克综合征 (TSS) 是一种罕见但可能致命的疾病,治疗选择有限。抗生素耐药菌株的出现迫切需要开发有效的治疗方法。本研究旨在通过使用色酮作为先导化合物靶向致病毒素蛋白来识别和优化针对中毒性休克综合征的潜在候选药物。材料和方法:在本研究中,筛选了 20 种色酮以确定它们与目标蛋白的结合能力。通过添加环庚烷和酰胺基团进一步优化最佳化合物,并使用化学吸收、分布、代谢、排泄和毒性 (ADMET) 分析评估所得化合物的类药特性。结果:在筛选的化合物中,7-葡萄糖氧基-5-羟基-2-[2-(4-羟基苯基)乙基]色酮表现出最高的结合亲和力,分子量为341.40 g/mol,结合能为-10.0 kcal/mol。优化后的化合物表现出良好的类药物特性,包括高水溶性、合成可及性、皮肤渗透性、生物利用度和胃肠道吸收。结论:这项研究表明,色酮可以进行工程改造,以开发有效的药物来对抗金黄色葡萄球菌引起的中毒性休克综合征。优化后的化合物有可能成为治疗中毒性休克综合征的一种有前途的治疗剂,为患有这种危及生命的中毒性休克综合征的患者带来新的希望。
此次事故的起因可以追溯到 InCobot 机械臂配备的人工视觉设备的训练方法。这只重约 50 公斤的手臂配备了一个摄像头,可以观察与人类操作员共享的环境,并检测附近是否有人手。视野中的手会打断机器人的移动,机器人会等待空间空闲后再采取行动。摄像头将其视频流发送到经过机器学习训练的系统。该系统基于通用的“YOLO”(You Only Look Once)技术,该技术广泛应用于计算机视觉,这是一种经过训练可识别日常物体的神经网络,其设计者强调其通用性,并通过“迁移学习”为其提供想要识别的特定物体的互补图像,从而实现专业化。
胞嘧啶碱基编辑器 (CBE) 能够在目标基因座上实现有效的胞嘧啶到胸苷 (C-to-T) 替换,而不会造成双链断裂。然而,目前的 CBE 会编辑其活动窗口内的所有 C,从而产生不良的旁观者突变。在最具挑战性的情况下,当旁观者 C 与目标 C 相邻时,现有的碱基编辑器无法区分它们并编辑两个 C。为了提高 CBE 的精度,我们识别并设计了人类 APOBEC3G (A3G) 脱氨酶;当与 Cas9 切口酶融合时,所得的 A3G-BE 会在人类细胞中对 5′-CC-3′ 基序中的第二个 C 进行选择性编辑。我们的 A3G-BE 可以高精度地安装单个与疾病相关的 C-to-T 替换。与 BE4max 相比,完美修饰等位基因的百分比在疾病校正方面高出 6000 倍以上,在疾病建模方面高出 600 倍以上。基于双细胞胚胎注射方法和 RNA 测序分析,我们的 A3G-BE 表现出最小的基因组和转录组范围的脱靶效应,实现了高靶向保真度。
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2022 年 9 月 2 日发布。;https://doi.org/10.1101/2022.09.02.506401 doi:bioRxiv preprint
传统的癌症疗法,包括手术、放疗和化疗,在治疗早期癌症患者方面效果良好,但它们往往无法治愈许多在不同器官发生转移的患者。为了克服这个问题,在过去的几十年里,人们开发了更具选择性的疗法,例如免疫疗法。免疫疗法的目的是增强免疫系统针对癌症的能力,从而选择性地杀死癌细胞,同时保留正常组织。不幸的是,癌细胞使用几种机制来削弱免疫疗法的功效,例如新抗原的表达、免疫抑制分子(IDO、PD-L1)的过度表达、髓系抑制细胞(MDSC)和调节性 T 细胞在肿瘤微环境(TME)中的积累。为了提高免疫疗法的功效并克服 TME 对免疫系统的抑制活性,人们开发了工程化的靶向癌症免疫疗法。这些包括双特异性单克隆抗体、免疫毒素、融合蛋白、嵌合抗原受体 (CAR)-T 细胞、基因治疗和具有抗体依赖性细胞介导的细胞毒作用 (ADCC) 或补体依赖性细胞毒作用 (CDC) 活性的单克隆抗体 (mAb)。CAR-T 细胞技术基于患者 T 淋巴细胞的分离,然后对其进行设计以表达嵌合抗原受体 (CAR)。经过改造的 T 淋巴细胞可以以不涉及主要组织相容性复合体 (MHC) 的方式识别和杀死癌细胞。在体外增殖后,CAR-T 细胞被重新注入患者体内(Lin 等人)。
基因组编辑工具,如锌指核酸酶、转录激活因子样效应核酸酶、CRISPR-Cas 系统和 CRISPR-Cas 衍生物(胞嘧啶和腺苷碱基编辑器),已广泛应用于基因组操作,并显示出它们的治疗潜力。除了基因组编辑技术之外,RNA 碱基编辑技术也得到了开发 1 。由于 RNA 编辑是可逆的、可调控的,并且不会导致基因组的永久性改变,因此它在治疗应用中可能具有一定的优势。对于腺苷的 RNA 编辑,作用于 RNA 的腺苷脱氨酶 (ADAR) 家族的成员,如 ADAR1(异构体 p110 和 p150)和 ADAR2(参考文献 2、3),已被设计用于将腺苷 (A) 精确转化为肌苷 (I) 1 。 ADAR1/2 的催化底物是双链 RNA,ADAR1/2 的脱氨酶结构域负责 A 到 I 的 RNA 编辑 4、5。肌苷被识别为鸟苷 (G),并在随后的细胞翻译过程中与胞苷 (C) 配对 3。为了实现靶向 RNA 编辑,ADAR 蛋白(或其脱氨酶结构域 ADAR DD)已与多种 RNA 靶向模块融合,例如 λ N 肽 6 – 8、SNAP 标签 9 – 13 和 Cas13 蛋白 14。此外,可以利用带有 R/G 基序的工程向导 RNA 与异位表达的 ADAR1 或 ADAR2 蛋白偶联来实现靶向 RNA 编辑 15 – 18。然而,外源编辑酶的异位表达与几个问题有关,包括基因组和/或 RNA 转录物的大量全局脱靶编辑 19 – 23 、免疫原性 24 – 27 、致癌性 28 – 30 和递送障碍 24 。 Stafforst 团队和我们自己报告的两种 RNA 编辑技术 RESTORE 31 和 LEAPER 32 利用内源性 ADAR 对 RNA 进行可编程编辑,而无需引入
许多细菌对入侵的噬菌体或质粒具有 II 型免疫力,称为成簇的规律间隔短回文重复序列 (CRISPR)/CRISPR 相关 9 (Cas9) 系统,用于检测和降解外来 DNA 序列。Cas9 蛋白有两个负责双链断裂的核酸内切酶(分别称为 HNH 结构域,用于切割 DNA 双链的靶链,RuvC 结构域用于切割非靶链)和一个单向导 RNA (sgRNA) 结合结构域,其中 RNA 和靶 DNA 链是碱基配对的。三种工程化的单 Lys-to-Ala HNH 突变体(K810A、K848A 和 K855A)表现出对靶 DNA 链切割的增强的底物特异性。我们在本研究中报告,在野生型酶中,在 1mM EDTA 存在下,与催化位点相邻的含 Y836 环(包括 E827-D837)内的 D835、Y836 和 D837 具有无法表征的加宽 1 H 15 N NMR 共振,而环中其余残基具有不同程度的加宽 NMR 光谱。我们发现,野生型酶中的该环在分子动力学 (MD) 模拟期间表现出三种不同的构象,而三个 Lys-to-Ala 突变体
耐多药结核分枝杆菌 ( Mtb ) 感染严重危害全球人类健康,迫切需要新的治疗策略。高效的基因组编辑工具有助于识别参与细菌生理、发病机制和耐药机制的关键基因和途径,从而有助于开发耐药结核病的新疗法。在这里,我们报告了一个双质粒系统 MtbCBE,用于灭活基因并在 Mtb 中引入点突变。在该系统中,辅助质粒 pRecX-NucS E107A 表达 RecX 和 NucS E107A 以抑制 RecA 依赖性和 NucS 依赖性的 DNA 修复系统,碱基编辑质粒 pCBE 表达结合胞苷脱氨酶 APOBEC1、Cas9 切口酶 (nCas9) 和尿嘧啶 DNA 糖基化酶抑制剂 (UGI) 的融合蛋白。这两个质粒共同实现了结核分枝杆菌基因组中所需位点处 G:C 到 A:T 碱基对的有效转换。碱基编辑系统的成功开发将有助于阐明结核分枝杆菌致病机理和耐药性的分子机制,并为开发其他微生物的碱基编辑工具提供重要启发。
核苷修饰的信使 RNA (mRNA)-脂质纳米颗粒 (LNP) 是首批两种 EUA(紧急使用授权)COVID-19 疫苗的基础。核苷修饰的 mRNA 作为药理学药剂的使用为治疗、预防和诊断分子干预开辟了巨大的机会。特别是,基于 mRNA 的药物可以特异性地调节免疫细胞,例如 T 淋巴细胞,用于肿瘤、传染病和其他疾病的免疫治疗。然而,关键的挑战是 T 细胞对外源 mRNA 的转染具有众所周知的抵抗力。在这里,我们报告将 CD4 抗体结合到 LNP 上可以实现对 CD4+ 细胞(包括 T 细胞)的特定靶向和 mRNA 干预。全身注射给小鼠后,CD4 靶向放射性标记的 mRNA-LNPs 在脾脏中积聚,与非靶向 mRNA-LNPs 相比,从脾脏分离的 T 细胞中的报告 mRNA 信号高 30 倍。静脉注射载有 Cre 重组酶编码 mRNA 的 CD4 靶向 LNPs 可产生特定的剂量依赖性 loxP 介导的基因重组,导致脾脏和淋巴结中分别约 60% 和 40% 的 CD4+ T 细胞表达报告基因。T 细胞表型显示 T 细胞亚群的转染均匀,在幼稚细胞、中枢记忆细胞和效应细胞中 CD4 靶向 mRNA-LNPs 的摄取没有差异。本研究建立的特异性和高效 mRNA 靶向和转染 T 细胞的方法为毁灭性疾病的免疫治疗和 HIV 治愈提供了平台技术。