归纳效率和分化精度不足。为了进一步增强干细胞的治疗性,并赋予它们新功能特征,越来越多的研究专门用于修饰工程干细胞及其在组织再生领域中的应用,并证明了最初的影响。本综述简要回顾了干细胞的工程策略,并着重于阐述工程干细胞在诸如伤口修复,软骨愈合,骨修复和免疫调节等方面的应用进展。
通讯作者:Salim Barbhuiya(电子邮件:s.barbhuiya@uel.ac.uk)摘要:工程化的胶结复合材料(ECC)由于其出色的机械性能和耐用性,在建筑行业中引起了极大的关注。此彻底的评论对ECC研究的进度和前景进行了细致的分析。它是通过引入背景和基本原理来调查ECC的,同时概述了审查的目标。评论提供了对ECC的概述,包括其定义,特征,历史发展,组成和组成材料。重点是检查ECC的机械性能,特别是其弯曲行为,拉伸行为,抗压强度和对环境因素的抵抗力。此外,还讨论了ECC的流变特性,包括可加工性,流动性,自我修复,缓解裂纹,粘度和触变性。评论深入研究了纤维增强对ECC的影响,包括所用的纤维类型,它们对机械和结构特性的影响以及纤维分散和方向。此外,它探讨了ECC在各个领域的各种应用,例如结构应用和可持续建筑实践。与ECC相关的挑战和局限性,例如成本和可用性,以及对未来趋势和研究方向的探索。关键字:工程化的胶结复合材料(ECC),耐用性,可行性,裂纹缓解,纤维增强1.2023; Shumuye等。引言工程胶结复合材料(ECC)由于其在建筑行业中的独特机械性能和潜在的应用而引起了相当大的研究兴趣。ECC是一种纤维增强的胶结材料,具有特殊的拉伸应变能力,裂纹控制和耐用性。ECC的发展可以追溯到1990年代Victor C. Li及其研究小组的开创性工作(Li,1998)。进行了广泛的研究,以探索ECC的各个方面,旨在提高其机械性能,优化其矩阵设计并扩大其应用程序范围。研究研究了ECC的直接拉伸性质,重点是影响其行为和应变响应的因素(Yu等,2018; Li等,2001)。已经探索了不连续的微纤维作为延性ECC的内在加固,以增强其韧性和结构性能(Zhang等,2020)。聚乙烯醇(PVA)纤维由于其有利的分散特征和应变硬化行为而成为增强的流行选择(Lee等,2009)。研究人员还研究了ECC的矩阵设计,特别着重于实现防水性能并在恶劣的环境中增强其性能(Yu等,2017; Zhang et al。2023)。此外,已经针对促进环保建筑实践的ECC及其在基础设施中的可持续性及其应用程序(Li,2019; Zhu等人。2021; Mishra等。2023)。使用
Cas12a 特异性的参考文献:Kim 等人。Nat Biotech 2016,Kleinstiver 等人。Nat Biotech 2016,Strohkendl 等人。Mol Cell 2018,Swarts 等人。Biochem Soc Trans 2019
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2022 年 9 月 2 日发布。;https://doi.org/10.1101/2022.09.02.506401 doi:bioRxiv preprint
传统的癌症疗法,包括手术、放疗和化疗,在治疗早期癌症患者方面效果良好,但它们往往无法治愈许多在不同器官发生转移的患者。为了克服这个问题,在过去的几十年里,人们开发了更具选择性的疗法,例如免疫疗法。免疫疗法的目的是增强免疫系统针对癌症的能力,从而选择性地杀死癌细胞,同时保留正常组织。不幸的是,癌细胞使用几种机制来削弱免疫疗法的功效,例如新抗原的表达、免疫抑制分子(IDO、PD-L1)的过度表达、髓系抑制细胞(MDSC)和调节性 T 细胞在肿瘤微环境(TME)中的积累。为了提高免疫疗法的功效并克服 TME 对免疫系统的抑制活性,人们开发了工程化的靶向癌症免疫疗法。这些包括双特异性单克隆抗体、免疫毒素、融合蛋白、嵌合抗原受体 (CAR)-T 细胞、基因治疗和具有抗体依赖性细胞介导的细胞毒作用 (ADCC) 或补体依赖性细胞毒作用 (CDC) 活性的单克隆抗体 (mAb)。CAR-T 细胞技术基于患者 T 淋巴细胞的分离,然后对其进行设计以表达嵌合抗原受体 (CAR)。经过改造的 T 淋巴细胞可以以不涉及主要组织相容性复合体 (MHC) 的方式识别和杀死癌细胞。在体外增殖后,CAR-T 细胞被重新注入患者体内(Lin 等人)。
此次事故的起因可以追溯到 InCobot 机械臂配备的人工视觉设备的训练方法。这只重约 50 公斤的手臂配备了一个摄像头,可以观察与人类操作员共享的环境,并检测附近是否有人手。视野中的手会打断机器人的移动,机器人会等待空间空闲后再采取行动。摄像头将其视频流发送到经过机器学习训练的系统。该系统基于通用的“YOLO”(You Only Look Once)技术,该技术广泛应用于计算机视觉,这是一种经过训练可识别日常物体的神经网络,其设计者强调其通用性,并通过“迁移学习”为其提供想要识别的特定物体的互补图像,从而实现专业化。
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2024 年 8 月 3 日发布。;https://doi.org/10.1101/2024.08.02.606370 doi:bioRxiv 预印本
摘要 简介 三阴性乳腺癌 (TNBC) 预后较差。针对经常具有免疫原性的 TNBC,增强抗体诱导的自然杀伤 (NK) 细胞抗肿瘤活性的免疫疗法正在兴起。天冬氨酸蛋白酶组织蛋白酶 D (cath-D) 是一种具有促肿瘤活性的肿瘤细胞相关细胞外蛋白,是 TNBC 的不良预后标志物,是基于抗体的疗法诱导 NK 细胞介导的抗体依赖性细胞毒性 (ADCC) 的主要靶点。本研究调查了 Fc 工程化抗 cath-D 抗体是否会触发 ADCC、它们对抗肿瘤功效和肿瘤浸润 NK 细胞的影响以及它们与 TNBC 联合治疗的相关性。方法 通过蛋白质印迹、免疫荧光和免疫组织化学评估 TNBC 样本中的 Cath-D 表达和定位。通过 ELISA 分析了增强(F1M1-Fc + )或阻止(F1M1-Fc − )对 CD16a 的亲和力的人抗 cath-D F1M1 和 Fc 工程抗体变体与分泌的人和鼠 cath-D 的结合,并通过表面等离子体共振和流式细胞术分析了与 CD16a 的结合。通过流式细胞术研究 NK 细胞活化,通过乳酸脱氢酶释放研究 ADCC。使用裸鼠中的 TNBC 细胞异种移植研究了 F1M1 Fc 变体的抗肿瘤功效。通过免疫表型分析和 RT-qPCR 分析了 MDA-MB-231 细胞异种移植中的 NK 细胞募集、激活和细胞毒活性。使用抗唾液酸 GM1 抗体耗尽 NK 细胞。在 TNBC 患者来源的异种移植 (PDX) 和 TNBC SUM159 细胞异种移植中以及与紫杉醇或恩杂鲁胺联合使用时评估了 F1M1- Fc + 抗肿瘤作用。结果 TNBC 细胞表面的 Cath-D 表达可用于诱导 ADCC。F1M1 Fc 变体识别人类和小鼠 cath-D。F1M1-Fc + 激活
多重遗传扰动对于测试编码或非编码遗传元件之间的功能相互作用至关重要。与 DNA 切割相比,使用 CRISPR 干扰 (CRISPRi) 抑制染色质形成可避免基因毒性,并且在混合检测中更有效地扰乱非编码调控元件。然而,目前的 CRISPRi 混合筛选方法通常仅限于每个细胞靶向 1-3 个基因组位点。为了开发一种在功能基因组学筛选中使用 CRISPRi 对基因组位点进行高阶 (> 3) 组合靶向的工具,我们设计了一种 Acidaminococcus Cas12a 变体——称为多重转录干扰 AsCas12a (multiAsCas12a)。 multiAsCas12a 在使用慢病毒转导传递的 CRISPR RNA(crRNA)高阶多路复用阵列进行组合 CRISPRi 靶向时,其表现明显优于最先进的 Cas12a 变体,
胞嘧啶碱基编辑器 (CBE) 能够在目标基因座上实现有效的胞嘧啶到胸苷 (C-to-T) 替换,而不会造成双链断裂。然而,目前的 CBE 会编辑其活动窗口内的所有 C,从而产生不良的旁观者突变。在最具挑战性的情况下,当旁观者 C 与目标 C 相邻时,现有的碱基编辑器无法区分它们并编辑两个 C。为了提高 CBE 的精度,我们识别并设计了人类 APOBEC3G (A3G) 脱氨酶;当与 Cas9 切口酶融合时,所得的 A3G-BE 会在人类细胞中对 5′-CC-3′ 基序中的第二个 C 进行选择性编辑。我们的 A3G-BE 可以高精度地安装单个与疾病相关的 C-to-T 替换。与 BE4max 相比,完美修饰等位基因的百分比在疾病校正方面高出 6000 倍以上,在疾病建模方面高出 600 倍以上。基于双细胞胚胎注射方法和 RNA 测序分析,我们的 A3G-BE 表现出最小的基因组和转录组范围的脱靶效应,实现了高靶向保真度。
