课程讲师:Markus Pflaum 博士 联系信息: 办公室:MATH 255 电话:2-7717 电子邮件:markus.pflaum@colorado.edu 讲座时间:MTWThF 上午 9:00 – 下午 12:00,2024 年 8 月 5 日至 22 日 地点:HUMN 1B90 目标受众:本课程面向具有跨学科兴趣的数学、物理、化学、计算机科学或工程学高年级本科生和研究生。建议具备线性代数和分析的基本知识。课程主页:http://math.colorado.edu/courses/HilbertSpaces 课程内容:本课程将介绍希尔伯特空间的理论及其在量子力学中的应用。在数学方面,将解释厄米内积、希尔伯特空间、有界线性算子、希尔伯特基和傅里叶展开、自伴随性和线性算子的谱的概念。此外,还将介绍香农经典数学通信理论的基本概念。然后将应用这些概念来描述量子力学公理、谱定理、冯·诺依曼熵和量子信息理论基础。课程项目和家庭作业:每个学生必须就希尔伯特空间理论中的特定主题撰写一篇短文(约 5 页)或完成扩展的家庭作业问题。此外,还必须在课堂上就课程论文或家庭作业进行简短介绍。论文截止日期为 2024 年 8 月 22 日。课程页面上将提供一系列可能的主题,但您可以提出自己的项目主题。课程评分:您的成绩将根据家庭作业或课程论文以及相应的演示文稿确定。
该硕士学位论文在量子信息理论(QIT)领域,可以被视为量子纠缠的介绍。纠缠是量子力学的关键非经典特征,也是几种现代应用程序的资源,包括量子cryp- forgraphy,量子计算和量子通信。论文探讨了QIT与几何图形,特别是凸集的牢固联系,并通过对欧几里得和希尔伯特空间和运算符的功能分析。基本的定义和概念是在数学框架中引入的,然后与量子信息理论和量子力学中的字段特定符号和概念有关。在开始时以下惯例和概念并进行了审查:bra-ket符号,希尔伯特空间,张量产品,操作员,或(指定基础后)基质代数,以及论文的关键概念,国家的概念(即,痕量的痕迹痕迹)或密度矩阵。一组国家有两个基本二分法。第一个二分法是在复杂的希尔伯特空间中的单位矢量和纯状态统计型的混合状态的纯状状态之间。引入了希尔伯特空间的张量和部分迹线上多方状态的概念。第二次二分法,涉及两分状态,位于可分离状态(即产物态的凸组合)及其补体之间,即纠缠状态。通常会方便地掉落痕量条件并考虑阳性半有限矩阵而不是凸状状态集的锥。CHOI同构通过将作用于矩阵或操作员代数的(超级)操作员与作用于双分部分希尔伯特空间的Choi矩阵有关的(超级)操作员在论文中起着核心作用。在指定基础中choi同构等于
经过简短的历史审查,我们将从波浪力学的角度介绍量子理论的基础。这包括对波函数,概率解释,操作员和schrödinger方程的讨论。然后,我们将考虑简单的一维散射和绑定的状态问题。接下来,我们将涵盖从更现代的角度进行量子力学所需的数学基础。我们将回顾矩阵力学和线性代数的必要元素,例如查找特征值和特征向量,计算矩阵的痕迹,并找出矩阵是遗传学还是单位。然后,我们将介绍狄拉克符号和希尔伯特的空间。然后,量子力学的假设将被形式化并用示例进行说明。
使用包含时空自由度的正交基,我们开发了用于量子光学的 Wigner 函数理论,作为 Moyal 形式主义的扩展。由于时空正交基涵盖所有量子光学状态的完整希尔伯特空间,因此它不需要分解为离散希尔伯特空间的张量积。与此类空间相关的 Wigner 函数成为函数,运算由函数积分(星积的函数版本)表示。由此产生的形式主义使时空自由度和粒子数自由度都相关的场景的计算变得易于处理。为了演示该方法,我们为一些众所周知的状态和算子计算了 Wigner 函数的示例。
摘要:量子力学引入的量子信息相当于经典信息的某种推广:从有限到无限的序列或集合。信息量是以基本选择为单位测量的选择量。“量子比特”可以解释为“比特”的推广,即在一系列备选方案中进行选择。选择公理对于量子信息是必要的。相干态在测量后随时间转变为有序的结果序列。量子信息量是与所讨论的无穷序列相对应的超限序数。超限序数可以定义为模糊对应的“超限自然数”,将皮亚诺算术的自然数推广到“希尔伯特算术”,从而实现了数学和量子力学基础的统一。
摘要。量子力学引入的量子信息等同于经典信息的一定概括:从有限到无限序列或集合。信息的数量是在基本选择单位中测量的选择数量。“ Qubit”可以解释为“位”的概括,这是连续替代方案的选择。选择的公理对于量子信息是必需的。测量后的时间,连贯状态被转化为有序的一系列结果。量子信息的数量是与所讨论的无限序列相对应的载量序数。可以将the柱数字定义为模棱两可的“跨足数自然数”,将peano算术的自然数推广到“希尔伯特算术”,从而允许统一数学和量子力学的基础。
2 链由局部哈密顿量的总和控制。非可逆经典 CA 的量子类似物被表示为由非厄米哈密顿量控制的非幺正量子系统。介绍并分析了用于控制此类演化的两组可能的非厄米算子。分析所得的量子系统,并将其与选定规则的经典系统进行比较。相似之处包括收敛到相似状态,并在静态和周期性情况下表现出相同的行为。针对选定系统确定并解释了已知的量子现象,如遍历性及其由于希尔伯特空间碎片而导致的破坏,其中与 PXP 模型等经过充分研究的系统进行了比较。
将连续规范场映射到量子计算机的复杂性限制了 QCD 动力学的量子模拟。通过以普朗克自由度的形式参数化规范不变希尔伯特空间,我们展示了如何将希尔伯特空间和相互作用展开为 N c 的逆幂。在这个展开的领先阶下,哈密顿量大大简化,无论是在所需的希尔伯特空间大小还是所涉及的相互作用类型方面。通过添加所得希尔伯特空间的局部能量状态截断,我们给出了明确的构造,允许在量子位和量子三元组上简单表示 SU(3) 规范场。此公式允许在 ibm_torino 上以 CNOT 深度 113 模拟 5 × 5 和 8 × 8 格子上 SU(3) 格子规范理论的实时动力学。
量子力学最引人注目的特性之一是,量子系统的状态可以表示为不同物理态的相干叠加,即与某些可观测量的实际可测值相对应的特征态。由于这些特征态构成了完全可区分状态的基础,因此这种线性展开的系数也取决于该基础。所有纯量子特性都与量子相干性的存在密切相关,量子相干性在实验中表现为干涉和量子涨落 [1]。人们确实认为,从经典世界到量子世界的转变是由于退相干 [2]。保持量子相干并从而对抗退相干是量子信息处理协议 [6] 面临的最基本挑战之一 [3–5]。近年来,相干性的定量理论取得了一些进展[7–9],并被应用于量子计量学[10,11]、量子基础[12,13]、量子生物学[14]和量子热力学[15,16]等领域。这种方法也促使人们努力将相干性的量化从量子态扩展到量子操作[17–21]。特别地,一个浮现出来的概念是量子图的相干性生成功率[22–25],即给定一类量子操作平均可以获得多少相干性。相干性概念本身与量子系统的局部性无关[8]。换言之,定义相干性的基础不一定需要希尔伯特空间的任何底层张量积结构,例如纠缠就是如此。另一方面,由于人们可以访问可观测量,每个现实的量子操作都是局部的[26]。为此,提出了几种考虑子系统结构的方法[27-31]。所采用的基本思想之一是考虑非相干态和操作,同时尊重希尔伯特空间的底层局部结构,从而获得相干性和纠缠之间的各种混合。在本文中,我们提出了可局域相干性的概念,即将相干性存储在特定