关于数学,牛顿通常被认为是广义二项式定理的提出者,该定理对任何指数都有效。他发现了牛顿恒等式、牛顿法,对三次平面曲线(二元三次多项式)进行了分类,对有限差分理论做出了重大贡献,并且是第一个使用分数指标和采用坐标几何推导丢番图方程解的人。他用对数近似了调和级数的部分和(欧拉求和公式的前身),并且是第一个自信地使用幂级数和反转幂级数的人。他还发现了计算圆周率的新公式。
本研究对量子力学中出现的一维时间分数阶非线性薛定谔方程进行了分析研究。在本研究中,我们建立了 Sumudu 变换残差幂级数法 (ST-RPSM) 的思想,以生成具有分数阶导数的非线性薛定谔模型的数值解。提出的思想是 Sumudu 变换 (ST) 和残差幂级数法 (RPSM) 的组合。分数阶导数取自 Caputo 意义。所提出的技术是独一无二的,因为它不需要任何假设或变量约束。ST-RPSM 通过一系列连续迭代获得其结果,并且得到的形式快速收敛到精确解。通过 ST-RPSM 获得的结果表明,该方案对于非线性分数阶模型是真实、有效和简单的。使用 Mathematica 软件以不同的分数阶级别显示一些图形结构。
粒子加速器物理与建模 II 2V 1U 加速器将被视为一个抽象的动态系统,我们将讨论非线性对带电粒子束动力学的影响。我们将介绍 Lie 方法与微分代数 (DA) 和截断幂级数 (TPS) 的结合。在第二部分中,我们将讨论使用神经网络和多项式混沌展开来构建此类非线性动态系统的替代模型。
本课程重点介绍偏微分方程的解析解。数值技术将只作简要介绍。本课程重点介绍传输现象问题中出现的偏微分方程的精确和近似解析解。以下是所涵盖主题的简要概述。1. 微分方程概述 2. 化学工程模型问题 3. 二阶偏微分方程 - 变量分离 4. Sturm-Liouville 理论 5. 特征函数展开和变换方法 6. 椭圆方程,解析解 - 直角坐标 7. 椭圆方程,数值解** 8. 抛物线方程,解析解 - 直角坐标 9. 抛物线方程,数值解** 10. 非线性方程的数值解** 11. Frobenius 的扩展幂级数法。贝塞尔函数-圆柱坐标系 12. 勒让德多项式-球坐标系 13. 积分变换法:拉普拉斯变换、傅里叶变换 14. 专题(即矩量法、特征线法、扰动法)
PO1 PO2 PO3 PO4 PO5 PO6 CO1 3 3 2 2 2 3 CO2 3 2 2 3 3 2 CO3 3 2 3 3 2 3 CO4 3 3 3 3 2 3 教学大纲: 基础拓扑:简介 黎曼斯蒂尔杰积分:积分的定义和存在性,积分的性质,具有可变极限的积分的积分和微分。 不正确积分:定义及其收敛性,收敛测试, 和 函数。 一致收敛:一致收敛的测试,和函数的极限和连续性定理,函数级数的逐项微分和积分。 幂级数:收敛及其性质。 傅里叶级数:狄利克雷条件、存在性、问题、半程正弦和余弦级数。学习资源:教科书:1. 数学分析原理,Walter Rudin,McGraw Hill,2017,第三版。2. 实分析,Brian S.Thomson,Andrew M.Bruckner,Judith B.Bruner,Prentice Hall
上述结构可以扩展到更一般类型的奇点,例如具有分支切割结构。现在我们可以理解“复苏”这一名称的由来。我们已经看到,Borel 变换的奇点会导致新的幂级数。事实证明,当 k 很大时,这些新级数通过系数 ak 的行为在原始级数中“复苏”。就 Borel 变换(在原点处解析)而言,这本质上是 Darboux 的一个古老定理,它将解析函数系数在原点处的大阶行为与最接近奇点附近的行为联系起来(参见例如 [ 2 ])。让我们首先陈述结果。让 ϕ ( z ) 成为一个简单的复苏函数,如 ( 2.19 ) 中所示。假设 A 是复平面上最接近原点的 Borel 变换奇点(为简单起见,我们假设只有一个奇点,尽管推广很简单)。假设该奇点附近的行为如 (2.29) 所示,ζ ω = A 。为简单起见,我们假设 ξ = 0 处的留数为零,即 a = 0。然后,系数 ak 具有以下渐近行为,
1.6.2 课程描述 第 2 年 MP0001 基础数学 AU:2,先决条件:无,学期:1 函数和导数。积分。复数和矢量。幂级数。多元函数和偏导数。常微分方程。 MP2001 材料力学 AU:3,先决条件:FE1001,第 1 和第 2 学期 平衡概念和自由体图回顾。应力和应变。扭转。梁的弯曲应力。梁的剪切应力。应力和应变的转变。屈服和断裂准则。梁的挠度。柱。 MP2002 机械运动学和动力学 AU:3,先决条件:FE1001,第 1 和第 2 学期 运动学基础。连杆运动学。机构静态力分析。机构动态力分析。正齿轮和齿轮系。凸轮。 MP2003(仅适用于主流)热力学 AU:4,先决条件:无,第 1 和第 2 学期纯物质的性质。功和热。能量和第一定律。封闭系统和稳态控制体积的能量平衡。第二定律和熵。封闭系统和稳态控制体积的熵平衡。发电厂和制冷系统的热力学循环。理想气体混合物和湿度计。反应混合物和燃烧。 MP2004(仅适用于主流和机电一体化流)制造技术和材料 AU:4,先决条件:无,第 1 和第 2 学期铁合金。有色金属和合金。聚合物:结构和
[1] Bobotas, P. 和 Koutras, MV (2019)。随机变量随机数的最小值和最大值的分布,《统计与概率快报》,第 146 期,第 57-64 页。[2] Ferreira, MA 和 Andrade, M. (2011)。M/G/∞ 队列繁忙期分布指数,《应用数学杂志》,第 4 (3) 期,第 249-260 页。[3] Forbes, C.;Evans, M.;Hastings, N. 和 Peacock, B. (2011)。《统计分布》,第四版,John Wiley & Sons, Inc.,新泽西州霍博肯。[4] Jodr´a, P. (2020)。根据移位 Gompertz 定律得出的有界分布,《沙特国王大学杂志 - 科学版》,第 32 期,第 523-536 页。 [5] Jodr´a, P. 和 Jim´enez-Gamero, MD 基于指数几何分布的有界响应分位数回归模型,REVSTAT 统计期刊,18(4),415-436。[6] Johnson, NL;Kotz, S. 和 Balakrishnan, N. (1994)。连续单变量分布,第 1 卷第二版,John Wiley & Sons, Inc.,纽约。[7] Mart´ınez, S. 和 Quintana, F. (1991)。广义上截断威布尔分布的检验,统计和概率快报,12(4),273-279。[8] McEwen, RP 和 Parresol, BR (1991)。完整和截断威布尔分布的矩表达式和汇总统计数据,《统计通讯 – 理论与方法》,20(4),1361-1372。[9] Meniconi, M. 和 Barry, DM (1996)。幂函数分布:一种用于评估电气元件可靠性的有用而简单的分布,《微电子可靠性》,36(9),1207-1212。[10] Nadarajah, S.;Popovi´c, BV 和 Risti´c, MM (2013)。Compounding:一个用于计算通过复合连续和离散分布获得的连续分布的 R 包,《计算统计学》,28(3),977-992。[11] Prabhakar, DN;Xie, M. 和 Jiang, R. (2004)。威布尔模型,《概率和统计学中的威利级数》,Wiley-Interscience,John Wiley & Sons,Inc.,新泽西州霍博肯。[12] Rao,ASRS(2006 年)。关于右截断瑞利分布生成函数推导的注记,《应用数学快报》,19(8),789-794。[13] Rinne,H.(2009 年)。《威布尔分布手册》,CRC Press,博卡拉顿。[14] Silva,RB;Bourguignon,M.;Dias,CRB 和 Cordeiro,GM(2013 年)。扩展威布尔幂级数分布的复合类,《计算统计与数据分析》,58,352-367。[15] Tahir,MH;Alizadeh,M.;Mansoor,M; Gauss, MC 和 Zubair, M. (2016)。威布尔幂函数分布及其应用,《Hacettepe 数学与统计杂志》,45(1),245-265。[16] Wingo, DR (1988)。右截断威布尔分布与寿命测试和生存数据的拟合方法,《生物统计学杂志》,30(5),545-551。[17] Wu, Z.;Kazaz, B.;Webster, S. 和 Yang, KK (2012)。交货时间和需求不确定性下的订购、定价和交货时间报价,《生产与运营管理》,21,576-589。[18] Zhang, T.和 Xie, M. (2011). 论上截断威布尔分布及其可靠性含义,可靠性工程与系统安全,96,194–200。