b'magic-角角扭曲的双层石墨烯可容纳各种有趣的物质状态,包括非常规的超导状态。但是,这种材料可以形成全新的物质状态吗?在本次演讲中,我将讨论两种不同类型的电子冷凝物的可能出现,它们超出了BCS耦合范式。这些是由典型的四元素形成的冷凝物,在电子对之间没有相干性,而是对成对对之间的相干性。通过使用大型蒙特卡洛模拟在魔术角扭曲的低能有效模型[1]中,我们表明,取决于超导地面状态,费米式四倍体置置供应量可以作为遗传相吻合。由四个破坏时间逆转对称性的电子形成,通常出现在超导过渡上方[2]。相反,如果基态是列明超导体,则我们的数值模拟表明,该系统在正常金属相中熔化之前表现出电荷4E相[3]。这表明扭曲的双层石墨烯是稳定和观察这些新型量子状态的理想平台。
最近已经证明,激光可能会产生具有相干性(量化为光谱峰处的平均光子数)的固定光束,该光束缩放为激光器中存储的平均激发数的第四幂,这比标准或schawlow-limtlate limatation the the the the the激励数量。,nat。物理。17,179(2021)]。此外,在分析上证明,这是CW激光器定义条件下的最终量子限制(海森堡极限)的缩放,以及关于输出光束的性质的强有力的假设。在我们的相关工作中[Ostrowski等。,物理。修订版Lett。 130,183602(2023)]我们表明,后者可以被较弱的假设所取代,该假设允许高度亚dososonian输出梁,而无需更改上限尺度或其可实现性。 在本文中,我们提供了相关论文中给出的计算的详细信息,并介绍了三个激光模型家族,这些模型可能被认为是该工作中介绍的模型的概括。 这些激光模型中的每个家族都由一个实数P = 4对应于原始模型的实际数字P = 4。 这些激光家族的参数空间进行了数值研究,我们在其中探讨了这些参数对激光束相干性和光子统计的影响。 可以根据P的选择来识别两个不同的连贯性方案,在P> 3中,每个模型都表现出Heisenberg-Limimimited Beam的连贯性,而对于P <3,Heisenberg极限不再达到。 15,而不是p = 4。Lett。130,183602(2023)]我们表明,后者可以被较弱的假设所取代,该假设允许高度亚dososonian输出梁,而无需更改上限尺度或其可实现性。在本文中,我们提供了相关论文中给出的计算的详细信息,并介绍了三个激光模型家族,这些模型可能被认为是该工作中介绍的模型的概括。这些激光模型中的每个家族都由一个实数P = 4对应于原始模型的实际数字P = 4。这些激光家族的参数空间进行了数值研究,我们在其中探讨了这些参数对激光束相干性和光子统计的影响。可以根据P的选择来识别两个不同的连贯性方案,在P> 3中,每个模型都表现出Heisenberg-Limimimited Beam的连贯性,而对于P <3,Heisenberg极限不再达到。15,而不是p = 4。此外,在以前的政权中,我们得出了与数字一致的这三个激光家族中每个激光族的光束相干性的公式。我们发现最佳参数实际上是p≈4。
摘要:力量训练(ST)诱导皮质肌肉肌肉适应,从而增强强度。ST改变了激动剂和拮抗肌肉的激活,该激动剂改变了运动控制,即力量产生稳定性和准确性。这项研究通过定量对皮层肌肉相干性(CMC)和绝对(AE)和力的误差(VE)进行定量,评估了皮质肌肉沟通和运动控制的改变,并在3周的最大强度训练(MST)干预过程中,特定地设计了型号的误差(VE)。用脑电图,肌电图和扭矩记录进行评估,在训练启动后1周进行了训练,然后进行了训练。对最大自愿等轴测收缩(MVIC),次最大扭矩产生,AE和VE,肌肉激活,肌肉激活以及CMC次级收缩期间的CMC变化的最大训练效果进行了评估。在整个培训完成期间,MVIC显着增加。对于次最大收缩,激动剂肌肉激活仅在初始扭矩水平时随时间降低,而拮抗剂肌肉激活,AE和VE随着时间的流逝,每个扭矩水平都会降低。cmc仍然没有MST的改变。我们的结果表明,训练后1周,神经生理适应很明显。然而,CMC仍然没有MST的改变,这表明中央运动适应可能需要更长的时间才能翻译成CMC改变。
简介:自由放养的白尾鹿(Odocoileus virginianus)是位于密歇根州东北部(美国)的牛结核病(BTB)的自我维持的水库,(美国)不断使该地区的牛业陷入困境。自由娱乐鹿的收获,诱饵禁令和农场的缓解措施减少了但没有消除鹿的BTB,也没有消除向牛的传播。鹿的明显患病率很低(1-2%),但恒定,疫苗接种可能是帮助解决该问题和值得研究的附加工具。结核分枝杆菌Calmette-guérin(BCG)疫苗是一种广泛使用的人类疫苗用于结核病,在家庭牲畜和野生动植物中也接受了很好的研究。它是主要的疫苗候选者,口服输送是将其交付给自由放养鹿的逻辑手段,尽管以前从未尝试过。
在开放的量子系统中,自旋速度的连贯性受自旋旋转相互作用,自旋扩散,静态和微波磁场1的含量和电荷噪声2的限制。使用不同的电子自旋共振(ESR)脉冲3 - 7,通过动态去耦(DD)量子量来实现相干时间的增加。然而,这种脉冲具有固有的缺陷和波动,因此需要自己的DD层,从而导致了倍增的量子。已提出了辅导DD 8、9的技术,用于氮空位(NV),中心至8、10-12的第二阶。在这里,我们演示了一种基于浮力模式的脉冲协议,该模式成功地增加了与量子的初始状态,在具有不同自旋的汉密尔顿和环境的材料中,与量子的初始状态无关,例如低和高旋转轨道耦合。我们使用非常弱的脉冲并改变了整个系统的动力学,而不是通过强烈的激发与浴缸的脱钩。对于我们的测量设置(在40 K左右)可以访问的短自旋松弛时间,可以与连贯性时间进行直接比较,我们演示了制度tr≈t1。在磁性稀释系统中t 1≫T 2,例如t 1,例如y 2 Sio 5:ER 3 + 13和y 2 Sio 5:Yb 3 + 14或28 Si:bi,具有可调的t 1千秒钟15。因此,我们的一般方法可以使用单个圆形极化图像脉冲导致很长的持久性狂欢振荡。这种方案将保护常规量子门之间的量子量的连贯性。已经提出了强烈的连续微波激励的使用作为保护量子位16、17的一种方式,尽管量子门需要正确的重新设计。在相关研究中,使用任意波形发生器的复杂脉冲设计在研究浮力拉曼转变18、19和氮气空位(NV)中心的两级系统20的量子指标中被证明至关重要。值得注意的是,在串联DD的情况下,第二阶(n = 2)激发的频率必须与第一个激发的Rabi频率匹配(n = 1);同样,这两种激发是线性极化的,彼此垂直(该方法扩展到n中的较高阶)。在实验上,该协议在脉冲设计和频率稳定性方面很快变得复杂且要求,高于第二阶。我们的协议使用两种连贯的微波脉冲:主脉冲驱动量子狂犬动物,而低功率,圆形极化(图像)脉冲连续维持自旋运动。图像驱动器的频率靠近主驱动器,其幅度为1-2个数量级。以这种方式,量子门可以由常规脉冲驱动,而无需图像脉冲,而门之间的时间间隔可以用整数使用我们的保护协议来填充整数的Rabi Nutations。我们注意到,两种脉冲之间的初始相位差可以通过增强(或减少)第二次敷料的浮标模式来调整自旋动力学。
振动极性子是通过光腔中分子振动和光子模式的强耦合形成的。实验表明,振动强耦合可以改变分子特性,甚至会影响化学反应性。然而,分子集合中的相互作用是复杂的,并且尚未完全了解导致修饰的确切机制。我们基于双量子相干技术模拟了分子振动极化子的二维红外光谱,以进一步深入了解这些混合光 - 制成状态的复杂多体结构。双重量子相干性独特地分辨出杂交光 - 偏振子的激发,并允许人们直接探测所得状态的非谐度。通过将腔体出生的腔体 - oppenheimer hartree -fock ansatz与相应特征状态的完整量子动力学模拟结合在一起,我们超越了简化的模型系统。这使我们能够研究自动极化的影响以及电子结构对腔体相互作用在光谱特征上的响应,甚至超出了单分子情况。
Kerr-cat 量子比特是一种玻色子量子比特,其中多光子薛定谔猫态通过向具有 Kerr 非线性的振荡器施加双光子驱动来稳定。随着猫尺寸的增加,比特翻转率受到抑制,这使得该量子比特成为实现针对噪声偏置量子比特量身定制的量子纠错码的有希望的候选者。然而,实现稳定和控制该量子比特所必需的强光物质相互作用传统上需要强大的微波驱动器,这会加热量子比特并降低其性能。相反,增加与驱动端口的耦合消除了对强驱动器的需求,但代价是较大的 Purcell 衰减。通过在芯片上集成有效的带阻滤波器,我们克服了这种权衡,并在具有高相干性的可扩展二维超导电路中实现了 Kerr-cat 量子比特。该滤波器在量子比特频率下提供 30 dB 的隔离度,在稳定和读出所需的频率下衰减可忽略不计。我们通过实验证明了具有八个光子的猫的量子非破坏读出保真度为 99.6%。此外,为了对该量子比特进行高保真通用控制,我们将快速 Rabi 振荡与 X ð π = 2 Þ 门的新演示相结合,通过对稳定驱动器进行相位调制。最后,检查了该架构中的寿命与振荡器中多达十个光子的猫大小的关系,实现了高于 1 毫秒的位翻转时间,并且相位翻转率仅呈线性增加,这与电路的理论分析非常一致。我们的量子比特有望成为占用空间小的容错量子处理器的构建块。
3非生物系统中的长尺度电磁量子相干性8 3.1关于Biefeld Brown效应。。。。。。。。。。。。。。。。。。。。。。。。。。。。。8 3.1.1布朗的原始实验。。。。。。。。。。。。。。。。。。。。。。。8 3.1.2蒂姆·文图拉(Tim Ventura)的查尔斯·伯勒(Charles Buhler)采访。。。。。。。。。。。。。。。。。8 3.1.3基于TGD的效果模型。。。。。。。。。。。。。。。。。。。。。。。。。9 3.2模型的假设。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。10 3.2.1 Biefeld Brown效果的模型是否适用于旋转磁系统?12 3.2.2 Biefeld-Brown效果的TGD视图摘要。。。。。。。。。。。。14 3.3生活系统与计算机之间的相互作用。。。。。。。。。。。。。。。16 3.4热圈,UAP,寿命,生命,第四层状态的空间等离子体中的外星生命。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。17 3.4.1浆液和生物学生命。。。。。。。。。。。。。。。。。。。。。。。。。。。18 3.4.2浆质生命是否是生物学生命的助产士?。。。。。。。。。。。20 3.4.3系绳实验。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。21
TGD启发的量子生物学的重点迄今已成为远程量子引力连贯性,其特征是Nottale引入的量子引力Planck常数。重力planck常数的概念也将其推广到其他经典场,尤其是电场,并且可以定义电磁planck常数。DNA,细胞和地球表面带负电荷。在本文中,考虑了这些系统中远程量子相干性的可能存在,并讨论了生命物质与计算机之间相互作用的模型。也从TGD的角度考虑了最近报道的惊人发现,表明地球热圈中存在非生物生命形式。将电量子相干性的条件应用于线性结构(例如DNA和神经元素)在康普顿长度上产生条件,从而产生了所考虑的带电粒子的质量。奇迹般地,对电子的条件很满意!
2型糖尿病(T2DM)的患病率及其并发症导致了全世界的死亡和残疾负担。T2DM的并发症非常普遍,在对亚洲,非洲,非洲,南美和欧洲的28个国家的观察性研究中,有一半的T2DM患者出现了小血管疾病(SVD)和27%的大血管疾病(1)。因此,很明显,SVD比大血管疾病更为普遍。糖尿病血管复杂性疾病是糖尿病患者死亡率的主要原因,其中最常见的是糖尿病性肾病(DR)和糖尿病性视网膜病(DN)(2)。根据大型中国城市中T2DM的流行病学调查,DR和DN分别占糖尿病中微血管病的39.7%和31.5%(2)。此外,在入射并发症的后续研究中确定了中国糖尿病患者大血管疾病的频率相对较低(3)。尽管基于严格控制血糖,血压和血脂的标准化治疗已被验证,以便能够减慢糖尿病微血管病的进展,但它们尚未完全阻止或反转该疾病(2、4、5)。因此,扩大有关SVD生理病理学的当前知识并确定新型潜在的生物标志物可能有助于促进SVD的检测和管理。近年来,对血液中的氨基酸和相关代谢产物进行了深入研究,因为T2DM及其并发症的一些最有希望的生物标志物候选者。芳香氨基酸(AAA),即酪氨酸,值得注意的是,大量的研究表明,T2DM和SVD患者的循环氨基酸水平发生了变化。