1个动物科学研究生课程(PPGCAN),兽医学院,帕拉联邦大学(UFPA),Castanhal 68746-360,宾夕法尼亚州,巴西; eder.b.rebelo@gmail.com(é.b.r.d.s。); camargojunior@gmail.com(R.N.C.C.-J.); adrinysantos2@gmail.com(A.D.S.M.L.); thomazguimaraes@yahoo.com.br(T.C.G.D.C.R.); joselourencojr@yahoo.com.br(J.D.B.L.-J.)2亚马逊联邦农村大学动物健康与生产研究所,贝利姆66000-000,巴西; jamileandrea@yahoo.com.br 3 Embrapa Eastern Amazon,Santarem 68010-180,宾夕法尼亚州,巴西; lucieta.martorano@embrapa.br 4亚马逊大学中心兽医系(UNAMA),圣塔勒姆68010-200,巴西,巴西; tatianebelovet@gmail.com(t.s.b.); cadu34.medvet@gmail.com(C.E.L.S.); rubensandrade.medvet@gmail.com(R.L.A。); gizelamedvet@gmail.com(A.G.D.S.S.S.); katarinacc4@gmail.com(K.C.D.C.)5农业和环境科学系,马托·格罗索联邦大学(UFMT),辛普78550-728,巴西,巴西; cvaufmt@gmail.com 6生物多样性与森林研究所 - 伊比夫,西方联邦大学(UFOPA),圣塔雷姆68040-255,宾夕法尼亚州,巴西; jucelane.lima@ufopa.edu.br(J.S.D.L.); kedson_neves@hotmail.com(K.A.L.N。)7帕尔萨尔大学联邦大学(UFPA)兽医学院,帕斯坦哈尔68740-000,巴西; silva_lilian@yahoo.com.br *通信:welligton.medvet@gmail.com;电话。: +55-(93)-988070692
摘要:锰(MN)是一种用于各种酶类别的辅因子,是所有生物体的必需痕量金属。但是,过度暴露于MN会导致神经毒性。在这里,我们评估了暴露于Mn氯化物(MNCL 2)对生存力,形态,突触功能(基于神经素表达)和斑马鱼幼虫行为的影响。MNCL 2从受精后2.5 h暴露导致受精后5天的生存率降低(60%)。表型变化影响了身体长度,眼睛和嗅觉器官的大小以及视觉背景适应。这伴随着神经素免疫染色的荧光强度和神经素蛋白编码基因NRGNA和NRGNB的表达水平的降低,表明存在突触改变。此外,过度暴露于MNCL 2导致幼虫表现出姿势缺陷,运动活动的减少以及对光环境的偏爱受损。从鱼类水中去除MNCL 2后,斑马鱼幼虫恢复了它们的色素沉着模式并使其运动行为归一化,表明MN神经毒性的某些方面是可逆的。总而言之,我们的结果表明,MN过度暴露会导致斑马鱼幼虫中明显的形态改变,神经素表达的变化和行为障碍。
。cc-by-nc-nd 4.0国际许可证未通过同行评审获得证明)是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是此预印本的版权持有人(该版本发布于2024年4月25日。; https://doi.org/10.1101/2023.03.14.532648 doi:biorxiv Preprint
helmholtz极地和海洋研究中心的Alfred-Wegener-Institute,Am Handelshafen,12,27570 Bremerhaven,德国B德国B海洋环境化学与生物学研究所(ICBM),Oldenburg大学,旧金堡大学,Schleusstraße1,26382 Wilhelmshaven,compoly compology of Schleussenstra。 FUENTUENUEVA S/N 1,18071 GRANADA,西班牙d生态与动物生物学系,Vigo大学,校园Lagoas Marcosende S/N,36310西班牙Vigo,E西班牙E生态,环境和植物科学系,斯多克大学,斯德哥尔摩大学,Svante Arrhenius v. ag ag20a,Swedig swedig switde v. ag ag 206 91 specten-swud f。在Freiburg,Fahnenbergplatz,79104 Freiburg I.Br.
在成人生物体中灭活基因功能的能力对于研究诸如再生和行为等生物学过程至关重要。这是通过工程化等位基因来实现的,该等位基因可以使用CRE重组酶有条件地灭活,然后使用药物诱导的CRE重组酶灭活基因功能。最近的一些研究清楚地表明,工程在斑马鱼中的有条件等位基因的可行性。同时,实现足够程度的重组以诱导完全丧失功能的丧失仍然是一个主要限制。在此,我们通过设计由斑马鱼β-Actin2基因的内含子增强子的斑马鱼泛素启动子组成的重组泛素启动子UBB R来解决这一限制。使用PHIC31介导的靶向集成,我们证明了UBB R在所有胚胎和幼虫阶段测试的UBB R显然均优于父母启动子以及目前可用的无处不在的Creer T2驱动线。此外,我们生成的UBB R:CRER T2驱动线使成人斑马鱼心中的Floxed等位基因几乎完全失活。最后,我们证明了我们的UBB R启动子在其他基因组基因座集成时会保留高活性,从而使其独特地适合于斑马鱼的所有阶段的转基因表达。
1 PharmD计划,药学学院,国王沙特大学,里亚德11451,沙特阿拉伯; shathamajed4@gmail.com(s.m.a. ); rahaf11301@gmail.com(R.M.A。 ); 441200367@student.ksu.edu.sa(r.r.a. ); 441200476@student.ksu.edu.sa(l.a.a. ); 442200723@student.ksu.edu.sa(D.H.A. ); 441200489@student.ksu.edu.sa(s.e.a.-a. ); 441200322@student.ksu.edu.sa(s.o.a. ); 439201033@student.ksu.edu.sa(r.a.a.) 2药理学和毒理学系,沙特国王大学药学学院,里亚德11451,沙特阿拉伯; aaloneazi@ksu.edu.sa(a.s.a. ); nalrasheed@ksu.edu.sa(N.M.A。 ); mahaali@ksu.edu.sa(M.A.A。 ); talshammary@ksu.edu.sa(t.k.a. ); abindayel@ksu.edu.sa(A.F.B.D. ); naldamri@ksu.edu.sa(N.T.A。 ); halghibiwi@ksu.edu.sa(H.K.A. ); dalkhelb@ksu.edu.sa(d.a.a.) 3沙特国王大学理学院动物学系,里亚德11451,沙特阿拉伯; elnagard1@yahoo.com 4动物学系,埃及艾因·沙姆斯大学女士,埃及11566 *通信:nrasheed@ksu.edu.edu.sa;电话。 : +966-1180506821 PharmD计划,药学学院,国王沙特大学,里亚德11451,沙特阿拉伯; shathamajed4@gmail.com(s.m.a.); rahaf11301@gmail.com(R.M.A。); 441200367@student.ksu.edu.sa(r.r.a.); 441200476@student.ksu.edu.sa(l.a.a.); 442200723@student.ksu.edu.sa(D.H.A.); 441200489@student.ksu.edu.sa(s.e.a.-a.); 441200322@student.ksu.edu.sa(s.o.a.); 439201033@student.ksu.edu.sa(r.a.a.)2药理学和毒理学系,沙特国王大学药学学院,里亚德11451,沙特阿拉伯; aaloneazi@ksu.edu.sa(a.s.a. ); nalrasheed@ksu.edu.sa(N.M.A。 ); mahaali@ksu.edu.sa(M.A.A。 ); talshammary@ksu.edu.sa(t.k.a. ); abindayel@ksu.edu.sa(A.F.B.D. ); naldamri@ksu.edu.sa(N.T.A。 ); halghibiwi@ksu.edu.sa(H.K.A. ); dalkhelb@ksu.edu.sa(d.a.a.) 3沙特国王大学理学院动物学系,里亚德11451,沙特阿拉伯; elnagard1@yahoo.com 4动物学系,埃及艾因·沙姆斯大学女士,埃及11566 *通信:nrasheed@ksu.edu.edu.sa;电话。 : +966-1180506822药理学和毒理学系,沙特国王大学药学学院,里亚德11451,沙特阿拉伯; aaloneazi@ksu.edu.sa(a.s.a.); nalrasheed@ksu.edu.sa(N.M.A。); mahaali@ksu.edu.sa(M.A.A。); talshammary@ksu.edu.sa(t.k.a.); abindayel@ksu.edu.sa(A.F.B.D.); naldamri@ksu.edu.sa(N.T.A。); halghibiwi@ksu.edu.sa(H.K.A.); dalkhelb@ksu.edu.sa(d.a.a.)3沙特国王大学理学院动物学系,里亚德11451,沙特阿拉伯; elnagard1@yahoo.com 4动物学系,埃及艾因·沙姆斯大学女士,埃及11566 *通信:nrasheed@ksu.edu.edu.sa;电话。: +966-118050682
每种 RNA 的水平取决于其产生率和衰变率之间的平衡。尽管先前的研究已经测量了组织培养和单细胞生物中整个基因组的 RNA 衰变,但很少有实验是在完整的复杂组织和器官中进行的。因此,尚不清楚在培养细胞中发现的 RNA 衰变决定因素是否在完整组织中保留,以及它们在邻近细胞类型之间是否不同以及在发育过程中是否受到调节。为了解决这些问题,我们通过使用 4-硫尿苷对整个培养的果蝇幼虫大脑进行代谢标记,测量了全基因组的 RNA 合成和衰变率。我们的分析表明,衰变率范围超过 100 倍,并且 RNA 稳定性与基因功能有关,编码转录因子的 mRNA 比参与核心代谢功能的 mRNA 稳定性低得多。令人惊讶的是,在转录因子 mRNA 中,更广泛使用的转录因子与在发育过程中仅短暂表达的转录因子之间存在明显的界限。编码瞬时转录因子的 mRNA 是大脑中最不稳定的。这些 mRNA 的特点是大多数细胞类型中的表观遗传沉默,如其富含组蛋白修饰 H3K27me3 所示。我们的数据表明存在针对这些瞬时表达的转录因子的 mRNA 不稳定机制,从而可以快速高精度地调节它们的水平。我们的研究还展示了一种测量完整器官或组织中 mRNA 转录和衰减率的通用方法,为了解 mRNA 稳定性在调节复杂发育程序中的作用提供了见解。
抽象在时间和空间控制的积累中是microRNA(miRNA)在各种发育过程中的功能的基础。在秀丽隐杆线虫中,这是通过颞型mirnas lin-4和let-7的e x增强的,但是对于大多数miRNA,d e v elopmental e xpres-sion模式仍然很差。的确,e x ppermimentserv ed long fall liv es ma y限制了可能的动力学。在这里,我们在秀丽隐杆线虫中介绍了高胚胎发育的miRNA表达。我们使用数学模型来探索潜在的机制。对于Let-7,我们可以通过节奏转录和通过RNA结合蛋白LIN-28对前体处理的节奏转录和特定阶段的调节结合来解释并实验确认。相比之下,Se v eral其他miRNA的动态不能仅通过调节生产率来解释。具体而言,示出了振荡转录和miR-235的振荡性转录和rh ythmic deca y rh ythmic积累,这是其他动物中miR-92的直系同源的。我们证明,miR-235和其他miRNA的衰变取决于EBAX-1,以前与目标指导的miRNA降解有关(TDMD)。综上所述,我们的结果提供了对动态miRNA衰变的见解,并建立了研究d v elopmental功能和作用于miRNA的调节机制的资源。
对羟基苯甲酸酯是化妆品,加工食品和药物的防腐剂。最常见的对羟基苯甲酸酯之一(PRP)对中枢神经系统的有害影响尚不清楚,尤其是在发育过程中。在这项研究中,使用综合方法在斑马鱼模型中研究了PRP和长期神经毒性的神经发育作用。暴露于两种不同浓度的PRP(10和1000μg/L)的斑马胚,然后检查幼虫的行为表型(开放式行为,惊厥反应和昼夜节律节奏)和相关的脑标记(CYP19A1B,PAX6A,SHANK3A,SHANK3A和GAD1B)。在30 dpf和60 dpf的少年上还检查了脑功能不对称和thigmotaxis的长期行为和认知对社交性的影响。此外,在60 dpf斑马鱼的大脑中评估了蛋白质组学和基因表达分析。有趣的是,幼虫中的高剂量减少了thigmotaxis,并在少年中增加了低剂量。shank3a和gad1b基因的表达均被PRP浓度抑制,表明PRP对神经发育的可能影响和
无效的回收和环境污染使全球塑料废物危机恶化,需要探索替代性处理方法。本文研究了黄色粉虫,Tenebrio molitor和Superworts,Zophabas Atratus的生物降解能力,重点是消耗扩展的聚苯乙烯(EPS),低密度聚乙烯(LDPE)和可生物降解的塑料。塑料废物,主要由多乙烯和聚苯乙烯(聚苯乙烯)等不可溶剂塑料组成,这引起了由于缓慢降解而引起的挑战。这项研究揭示了幼虫对EPS的偏爱,强调了特定于物种考虑在塑料废物管理中的重要性。对EPS的偏爱至关重要,因为与其他类型的塑料相比,它更笨重,更难处置。实验设置监测了幼体消耗,重量测量和FRASS产生表明偏好。傅立叶变换红外光谱证实了菌丝中生物降解的迹象,证明了幼虫消化对塑料结构的变革性影响。尽管有宝贵的见解,但诸如维持幼虫营养和理解环境因素对降解效率的影响等挑战需要进一步探索。利用昆虫幼虫进行塑料废物管理有望进行可持续缓解,但持续的研究对于实际实施至关重要。
