[1] JT Heron, M. Trassin, K. Ashraf, M. Gajek, Q. He, SY Yang, DE Nikonov, Y.-H. Chu, S. Salahuddin 和 R. Ramesh, 《铁磁体-多铁性异质结构中的电场诱导磁化反转》, Phys Rev Lett 107 , 217202 (2011)。[2] SO Sayedaghaee, B. Xu, S. Prosandeev, C. Paillard 和 L. Bellaiche, 《多铁性 BiFeO3 中的新型动态磁电效应》, Phys Rev Lett 122 , 097601 (2019)。 [3] A. Haykal 等人,BiFeO 3 中受应变和电场控制的反铁磁纹理,Nat Commun 11,1704 (2020)。[4] H. Jang 等人,外延 (001) BiFeO3 薄膜中的应变诱导极化旋转,Phys Rev Lett 101,107602 (2008)。[5] IC Infante 等人,BiFeO 3 中外延应变桥接多铁性相变,Phys Rev Lett 105,057601 (2010)。 [6] H. Béa 等人,巨轴比化合物室温多铁性证据,Phys Rev Lett 102,217603 (2009)。[7] IC Infante 等人,BiFeO 3 薄膜室温附近的多铁性相变,Phys Rev Lett 107,237601 (2011)。[8] H. Béa、M. Bibes、F. Ott、B. Dupé、X.-H. Zhu、S. Petit、S. Fusil、C. Deranlot、K. Bouzehouane 和 A. Barthélémy,多铁性 BiFeO 3 外延薄膜的交换偏置机制,Phys Rev Lett 100,017204 (2008)。 [9] D. Lebeugle,D. Colson,A. Forget,M. Viret,AM Bataille 和 A. Gukasov,室温下电场诱导 BiFeO3 单晶自旋翻转,Phys Rev Lett 100,227602(2008)。[10] A. Finco 等人,非共线反铁磁体中的拓扑缺陷成像,Phys Rev Lett 128,187201(2022)。[11] M. Hambe,A. Petraru,NA Pertsev,P. Munroe,V. Nagarajan 和 H. Kohlstedt,跨越界面:磁性复合氧化物异质结构中隧道电流的铁电控制,Adv Funct Mater 20,2436(2010)。 [12] SR Burns、O. Paull、J. Juraszek、V. Nagarajan 和 D. Sando,《外延 BiFeO 3 中的摆线或非共线反铁磁性实验指南》,《先进材料》第 32 卷,2003711 页 (2020 年)。[13] M. Cazayous、Y. Gallais、A. Sacuto、R. de Sousa、D. Lebeugle 和 D. Colson,《在 BiFeO 3 中可能观察到摆线电磁振子》,《物理评论快报》第 101 卷,037601 页 (2008 年)。[14] D. Sando 等人,《通过外延应变制作 BiFeO 3 薄膜的磁振子和自旋电子响应》,《自然材料》第 12 卷,641 页 (2013 年)。 [15] J. Li 等人,亚太赫兹产生的反铁磁磁振子的自旋电流,Nature 578,70 (2020)。[16] E. Parsonnet 等人,在没有施加磁场的情况下对热磁振子的非挥发性电场控制,Phys Rev Lett 129,87601 (2022)。[17] S. Manipatruni、DE Nikonov、CC Lin、TA Gosavi、H. Liu、B. Prasad、YL Huang、E. Bonturim、R. Ramesh 和 IA Young,可扩展的节能磁电自旋轨道逻辑,Nature 565,35 (2019)。 [18] YT Chen、S. Takahashi、H. Nakayama、M. Althammer、STB Goennenwein、E. Saitoh 和 GEWBauer, 自旋霍尔磁阻理论, Phys Rev B 87 , 144411 (2013)。[19] J. Fischer 等人, 反铁磁体/重金属异质结构中的自旋霍尔磁阻, Phys Rev B 97 , 014417 (2018)。
特定客户,由美国材料与试验协会为在版权许可中心 (CCC) 交易报告服务中注册的用户提供,前提是基本费用为每份 2.50 美元,外加每页 0.50 美元,直接支付给 CCC,地址:27 Congress St., Salem, MA 01970;电话:(508) 744-3350。对于已获得 CCC 复印许可的组织,已安排了单独的付款系统。交易报告服务用户的费用代码为 0-8031-1870-8/93 $2.50 + .50。
航空业存在严重的供应链问题。飞机和发动机的生产延误自大流行以来一直持续下去,迄今为止,在十年结束之前没有减轻真正的迹象。航空公司和出租人都在努力准时运送飞机,这对航空经济周期产生了重大影响。几乎每个制造业中提出的相同问题都基于类似的因素:劳动力短缺,原材料稀缺,能源成本上升,通货膨胀,运输和物流限制以及由地缘政治因素造成的破坏。自从大流行以来,所有这些压力点已经席卷了世界经济,乌克兰和中东的战争加剧或肯定会加长。机身和发动机制造商以及组件和零件供应商都面临着严重的供应链中断和延误,这导致了新飞机的交付延迟。在2024年在飞机供应链中添加工业行动和监管限制。“我们正在努力准时购买飞机,” Avolon首席执行官Andy Cronin说。“双方的制造商都有延误,这是由于上游供应链挑战的重大挑战所致。” 2024年初,空中客车首席执行官Guillaume Faury称供应链为“瓶颈世界”,并且该公司“与我们拥有供应商一样多的情况”。这些瓶颈包括原材料的供应 - 特别是钢和钛) - 组件和发动机。空中客车在7月的半年指导中再次重申了这些问题,该公司表示,商业飞机部门正面临“持续存在的特定供应链问题,主要是在发动机,航空机构和机舱设备中”。因此,空中客车公司修改了其A320的升级轨迹,到2027年以每月75 A320家族飞机的生产率为目标。空中客车在精神气氛(精神)时遇到了进一步的问题 -
摘要:在本研究中,我们展示了施加的机械应变与单层 MoS 2 光响应度增加之间的直接相关性。这表明拉伸应变可以提高单层 MoS 2 光电探测器的效率。在我们的设备中观察到的高光电流和延长的响应时间表明,设备主要受光电门控机制控制,施加拉伸应变时,这种机制变得更加突出。此外,我们已经证明,非封装的 MoS 2 单层可以在基于应变的设备中使用许多次循环和长时间,在环境条件下表现出耐久性而不会丧失功能。这种坚固性强调了 MoS 2 在进一步功能化和利用不同柔性传感器方面的潜力。关键词:MoS 2、应变、应变传感器、光电探测器、原子力显微镜、PL 光谱、光电流光谱
作为 AMC 的铸造准备解决方案 (CSR) 的一部分,美国铸造协会在国防后勤局 (DLA) 资助的研究期间开发了铸造金属的应变寿命疲劳数据库。该数据库包含单调和循环属性数据,以及各种铸铁(包括灰铸铁、球墨铸铁、蠕墨铸铁和白铸铁以及一些铝合金)的相关化学分析、截面厚度、成型工艺和微观结构数据。数据库中的疲劳数据是根据 ASTM 标准 E606 开发的,寿命范围为 100 次循环至 500 万次循环,拉伸数据是使用 ASTM 标准 E8 测试棒开发的。当前项目将这些经过验证的应变寿命疲劳数据整合到凝固和工程建模软件中,以帮助工程师设计铸造部件,并使用制动转子的铸钢轮毂作为案例研究,该轮毂在轻轨应用中用螺栓固定在车轴上(上图)。
先进的柔性电子器件和软体机器人需要开发和实施柔性功能材料。磁电 (ME) 氧化物材料可以将磁输入转换为电输出,反之亦然,使其成为先进传感、驱动、数据存储和通信的绝佳候选材料。然而,由于其易碎性质,它们的应用仅限于刚性设备。在这里,我们报告了柔性 ME 氧化物复合材料 (BaTiO 3 /CoFe 2 O 4 ) 薄膜纳米结构,它可以转移到可拉伸基底上,例如聚二甲基硅氧烷 (PDMS)。与刚性块体材料相比,这些陶瓷纳米结构表现出柔性行为,并通过机械拉伸表现出可逆可调的 ME 耦合。我们相信我们的研究可以为将陶瓷 ME 复合材料集成到柔性电子器件和软体机器人设备中开辟新途径。
1微电器设备与综合技术的关键实验室,中国科学院微型电子学院,中国北京100029; duyong@ime.ac.cn(Y.D.); xubuqing@ime.ac.cn(b.x。); kongzhenzhen@ime.ac.cn(Z.K.); yujiahan@ime.ac.cn(J.Y。); zhaoxuewei@ime.ac.cn(X.Z.); linhongxiao@ime.ac.cn(H.L.); sujiale@ime.ac.cn(J.S.); hanjianghao@ime.ac.cn(J.H.); liujinbiao@ime.ac.cn(J.L.); dongyan2019@ime.ac.cn(y.d。); wangwenwu@ime.ac.cn(W.W.)2中国科学院微型电子学院,中国100049,中国3研究与发展中心,古旺湾地区综合电路和系统研究所,综合电路和系统研究院liben@giics.com.cn 4 CAS量子信息信息实验室,中国科学技术大学,Hefei 230026,中国5电子设计系,瑞典中部,瑞典中部,霍尔姆加坦10,85170 Sundsvall,瑞典 *通信 *通信); miaoyuanhao@ime.ac.cn(Y.M.); rad@ime.ac.cn(H.H.R.);电话。: +86-010-8299-5793(G.W.)
清洁,导电棉布和MCF应变传感器的SEM图像如图3。图3a显示了不同宏伟的干净棉织物的形态。可以看出,织物由编织的棉纤维束组成,纤维的表面相对光滑。图3(C-E)在将织物浸入MXENE悬浮液和干燥后,从不同角度显示了导电MCF的SEM成像。在弹性的2D MXENE纳米片装饰纤维表面并在棉纤维上观察到组装的Mxene纳米片后,光滑的棉纤维表面变得粗糙。因此,获得了带有核心壳结构的Mxene装饰的棉纤维。图3G是MXENE包装纤维和相应元素映射的SEM图像。据观察,Ti,C和O均匀地分布在棉纤维表面上,表明纤维被一层Mxene纳米片紧密包裹。图3F显示,导电棉纤维被PDMS层很好地封装,这些PDMS层对内导电棉纤维起着保护性和限制性作用,并且在封装过程后保持了织物结构。