摘要:由于污染和降低成本的因素,废料的再利用最近变得越来越有吸引力。使用废料可以减少环境污染和产品成本,从而促进可持续发展。大约 95% 的含碳酸钙废蛋壳最终未被利用而被填埋。这些蛋壳是一种生物废物,在转化为 CaO 后可以重新用作各种应用的催化电极材料,包括超级电容器。同样,如果回收不当,使用过的废电池电极材料也会对环境造成危害。各种类型的电池,特别是锂离子电池,在世界范围内得到广泛使用。考虑到其经济效益低,回收旧锂离子电池的重要性已降低。这就需要找到替代方法来回收和再利用废旧电池的石墨棒。因此,本研究报告了通过高温煅烧将废蛋壳转化为氧化钙,并从废旧电池中提取纳米石墨以应用于储能领域。使用 XRD、SEM、TEM 和 XPS 技术对 CaO 和 CaO/石墨的结构、形态和化学成分进行了表征。对制备的 CaO/石墨纳米复合材料在电化学超级电容器应用中的效率进行了评估。与单独的 CaO 相比,从废旧锂离子电池中获得的 CaO 及其与石墨粉的复合材料在储能应用中表现出更好的性能。将这些废料用于电化学储能和转换设备可实现更便宜、更环保和可持续的工艺。这种方法不仅有助于储能,而且还通过减少垃圾填埋场来促进废物管理的可持续性。
摘要:发展新能源汽车是发展低碳汽车产业的必然要求。大量集中报废动力电池如果回收处置不当,在更换第一代电池时会造成大规模的环境污染和安全事故,对环境和其他经济主体产生显著的外部性。部分国家在回收报废动力电池时,存在回收率较低、梯次利用场景划分不明确、回收体系不完善等问题。因此,本文首先分析了代表性国家动力电池回收政策,找出部分国家回收率偏低的原因,并发现梯次利用是报废动力电池回收的关键环节。其次,本文从消费者回收和企业处置电池两个阶段,总结现有的回收模式与体系,形成完整的回收闭环流程。梯次利用是政策与回收技术高度关注的问题,但对梯次利用应用场景的分析研究较少。因此本文结合案例,清晰划分梯次利用场景,并在此基础上提出4R废旧动力电池回收体系,完善现有回收体系,实现废旧动力电池的高效回收利用。最后,分析了现存的政策问题和技术挑战,结合实际情况和未来发展趋势,从政府、企业、消费者三个角度提出发展建议,实现废旧动力电池的最大化再利用。
此符号表示根据 WEEE 指令 (2002/96/EC) 和您所在国家/地区的法律,该产品不能与家庭垃圾一起处理。 应将该产品交至指定的收集点或授权的废旧电气和电子设备 (EEE) 回收站。 如果对此类废物处理不当,可能会对环境和人类健康产生负面影响,因为 EEE 通常含有潜在危险物质。 同时,您在正确处理该产品方面的配合将有助于有效利用自然资源。 有关您可以将废旧设备放在何处进行回收的更多信息,请联系您当地的市政办公室、废物管理部门、经批准的 WEEE 计划或您的家庭废物处理服务机构。
1 青岛大学威海创新研究院电气工程学院,青岛 266000,中国 2 西安交通工程学院,西安 710300,中国 3 青岛海尔洗衣机有限公司,青岛 26000,中国 * 电子邮件:wkwj888@163.com 收稿日期:2022 年 9 月 13 日 / 接受日期:2022 年 11 月 13 日 / 发表日期:2022 年 11 月 30 日 塑料制品产量不断增加和回收利用不足,导致白色污染问题困扰全球,严重影响了生态环境、海洋生物和排水系统。此外,低功耗电子设备的广泛应用使功耗成为不可忽视的因素。因此,回收废弃的塑料袋作为摩擦纳米发电机(TENG)的摩擦材料,收集日常生活中的机械能并将其转化为持续稳定的电能,可以同时缓解白色污染和能耗两大问题。此外,利用TENG构建的自供电系统在驱动低功耗电子产品、环境监测、可穿戴设备等方面有着巨大的潜力。据此,本文概述了白色污染的概况、TENG的理论起源、工作原理和理论模型,分析了利用废旧塑料袋制造TENG的可行性,以及该自供电传感系统的应用进展,并对未来进行了展望。关键词:摩擦纳米发电机;自供电系统;废旧塑料袋;TENGs 1.引言
8.环境许可证,是指主管机关向从事生产活动的组织或者个人(以下简称“单位”)颁发的允许该组织或者个人向环境中排放废弃物以及将从国外进口的废旧物品按照法律规定的环境保护要求作为生产原料进行管理的文件。
肯塔基州法兰克福(2025 年 2 月 4 日)——今天,肯塔基州团队宣布,现接受社区项目的提案,这些项目旨在推广使用肯塔基州回收的废旧轮胎,并帮助支持肯塔基州家庭开展健康的户外活动。资金可用于景观美化覆盖物项目、步行道、现浇游乐场、人行道或其他表面、马拖车或马厩垫、树井或其他利用肯塔基州回收轮胎的产品。
本研究旨在利用工业废料,如发泡聚苯乙烯包装废料 (EPS) 和废旧轮胎废料,生产出一种新的复合材料。新型复合材料 RTPC(橡胶轮胎聚苯乙烯复合材料)是废旧轮胎中的橡胶颗粒作为增强材料,以及通过回收 EPS 和汽油获得的基质的混合物。在本研究中,考虑了几种基质/增强材料重量比例(25%、30% 和 35%)和几种增强材料粒度(2-3、3-4 和 4-5 毫米)。进行了物理、机械和热特性分析,以确定复合材料的密度、弯曲模量、最大应力和热导率。根据得到的结果,得到的 RTPC 材料被认为是一种密度在 500 到 600 kg/m 3 之间的轻质材料。 RTPC 材料的热特性测试还表明,RTPC 是一种绝缘材料,导热系数在 0.22 至 0.23 W/mK 之间。另一方面,三点弯曲测试表明,RTPC 材料的弯曲性能较差。RTPC 材料可用作建筑施工领域的良好隔热材料。如果 RTPC 材料的机械性能得到改善,则可将其用作夹层结构中的结构部件,用于其他应用。
Flexofibers Europa SL FlexoFibers 为建筑行业释放废旧轮胎中钢纤维的二次利用潜力 混合融资 www.flexofibers.com 西班牙 Gate2brain SL GATE2BRAIN GATE2BRAIN。突破壁垒的药物。先拨款 https://gate2brain.com 西班牙 INBRAIN NEUROELECTRONICS SL EGNITE 工程石墨烯用于开发神经接口,彻底改变我们治疗神经系统疾病的方式 混合融资 https://www.inbrain-neuroelectronics.com/ 西班牙
直接回收是实现废旧锂离子电池 (LIB) 循环经济的关键技术。对于正极活性材料 (CAM),它被认为是当前回收技术中最紧密的闭环和最有效的方法,因为它只是通过重新锂化和重建老化的 CAM 来进行,而不是将它们分离成元素成分。在本研究中,通过模拟原始 CAM 合成的条件来恢复基于 LiNi 0.83 Co 0.12 Mn 0.05 O 2 (NCM-831205) 的废旧 CAM,即形态和结构分解的 CAM。在评估和优化 CAM 恢复的高温持续时间和随后的清洗程序后,回收的 CAM 显示出保持多晶性和振实密度,成功恢复比表面积、锂含量、表面和本体的晶体结构,但仅部分恢复原始的二次粒度和形状。虽然在最初的 100 次充电/放电循环中,锂离子电池中的原始 CAM 可与原始 CAM 相媲美,但随后的电阻增加和容量衰减仍然是一个挑战。回收过程中的高温可视为材料层面的一个关键挑战,因为它不仅会促进残留炭黑中有害的表面碳酸盐物种,还会通过氧气释放增强阳离子无序性和微/纳米孔隙率,这很可能发生在脱锂、因此热稳定性较差的循环 NCM 区域。