抽象的贵金属氧化物(例如二氧化芳族)是酸性电解质中阳极反应的高度活性电催化剂,但是电化学操作期间的溶解阻碍了在可再生能源技术中的广泛应用。改善对纳米晶体等应用相关形态的溶出动力学的基本理解对于这些材料的网格尺度实施至关重要。在本文中,我们报告了在氧化条件下二氧化碳纳米晶体溶解期间通过液相透射电子显微镜观察到的纳米级异质性。单晶唯一二氧化物纳米晶体可直接观察沿不同晶体学方面的溶解度,从而可以对晶体方面的稳定性进行前所未有的直接比较。纳米级观察结果揭示了横跨不同纳米晶体的晶体相相的相对稳定性的实质异质性,这归因于这些晶体中存在的纳米级菌株。这些发现突出了纳米级异质性在确定诸如电催化剂稳定性之类的宏观特性中的重要性,并提供了一种可以将其集成到下一代电催化剂发现工作中的特征方法。简介
。cc-by-nc-nd 4.0国际许可证。是根据作者/资助者提供的预印本(未经同行评审的认证)提供的,他已授予Biorxiv的许可证,以在2023年11月30日发布的此版本中显示此版本的版权持有人。 https://doi.org/10.1101/2023.02.04.527050 doi:Biorxiv Preprint
巨噬细胞代表了肿瘤微环境(TME)的关键组成部分,并且主要与预后不良有关。宏观靶向的治疗靶向历史上一直集中在抑制其募集或重编程其表型从病(类似于M2)到抗肿瘤(M1类)。不幸的是,这种方法尚未提供改变实践的临床突破。利用单细胞RNA测序(SCRNA-SEQ)和空间转录组学的新兴研究提高了我们对巨噬细胞的本体发育,表型和功能可塑性的理解。覆盖有关巨噬细胞分子亚型和功能的当前信息的财富,还鉴定出了新型的治疗脆弱性,这些脆弱性可能可以更好地控制肿瘤相关的巨噬细胞(TAMS)。在这里,我们讨论了巨噬细胞的功能性培养,并提供了新型巨噬细胞靶向疗法的更新。
先前的研究表明,胰腺α细胞可以转化为β细胞,并且β细胞脱离分化,并且很容易获得2型糖尿病(T2D)中的α细胞表型。但是,参与α-to-β细胞和β-β-to-α-α细胞转变的特定人α细胞和β细胞亚型尚不清楚。在这里,我们已经整合了分离的人类胰岛和人类胰岛移植物的单细胞RNA测序(SCRNA-SEQ)和单核RNA-SEQ(SNRNA-SEQ),并为α-β细胞命运转换提供了更多洞察力。使用这种方法,我们进行了七个新颖的观察结果。1)有五个不同的GCG表达人的α细胞子序列[α1,α1,α2,α-β-转移1(AB-TR1),α-β-透射2(AB-TR2)和α-β(AB)群集(AB-TR2)和α-β(AB)群集,具有不同的人类小动物的转录组概况。2)AB亚集群显示多摩尼语基因表达,主要从SNRNA-SEQ数据推断出,暗示通过mRNA表达鉴定。3)α1,α2,AB-TR1和AB-TR2亚clus子富含特异性的α细胞功能的基因,而AB细胞富含与胰腺祖先和β细胞途径相关的基因; 4)提取的α-和β细胞簇的轨迹推理分析以及RNA速度/PAGA分析表明,AB对α-和β-细胞的分叉过渡潜力。5)基因通用性分析识别Znf385d,TRPM3,CASR,MEG3和HDAC9是朝向β细胞和SMOC1和SMOC1,PLCE1,PAPAPA2,ZNF331,ZNF331,ALDH1A1,ALDH1A1,SLC30A8,SLC30A8,BTG2,TM4SF4,TM4SF4,NRR4A1和PSC的轨迹的签名α细胞。6)显着地,与体外事件相反,AB亚集群在人类胰岛移植物中没有在体内鉴定,而轨迹推断分析表明,仅在体内从α到β细胞的单向转变。7)对成年人类T2D供体胰岛的SCRNA-SEQ数据集的分析表明,从与去分化或转化为α细胞的β-到α细胞的单向单向过渡。总体而言,这些研究表明,可以利用SnRNA-SEQ和SCRNA-SEQ来确定人胰岛内分泌细胞在体外,体内,非糖尿病和T2D中的转录状态的过渡。他们揭示了参与α-和β细胞之间互连的常见轨迹的潜在基因特征,并突出了研究人类胰岛在体内的单个核转录组的实用性和功能。最重要的是,它们说明了研究人类胰岛在自然体内环境中的重要性。
在当前的论文中,我们分析了一个扩展的SIRS流行模型,在该模型中,个体水平的免疫力以指数级的速度逐渐降低,但是在个体之间的减弱率可能会有所不同,例如,作为免疫系统差异的影响。该模型还包括旨在达到和维持牛群免疫力的疫苗接种方案。我们考虑了已知各个减弱参数的知情情况,因此可以根据自上次疫苗接种以及个体衰减率以来的时间来选择疫苗,以及更有可能未知的情况下的疫苗不知情的情况,在这些情况下,只有允许疫苗接种量以来,因此允许时间依赖时间。得出了知情和均匀异质情况的最佳疫苗接种政策,并将其与均质减弱模型(这意味着所有个体都具有相同的免疫力降低率),以及经典的SIRS模型,其中在一个飞跃中完全免疫以完全免疫力下降。表明,经典的SIRS模型需要最少的疫苗,其次是均匀逐渐减弱的SIRS,然后是该模型的知情情况,具有异质性的逐渐减弱。最有可能的情况是,需要大多数饲养群疫苗的情况是,免疫异质性逐渐逐渐减弱。对于被选为模仿Covid-19-19的参数值,并假设最初的初始免疫力和12个月的累积免疫力为12个月,经典的同质爵士的流行表明,每15个月为个体疫苗接种足以达到和维持畜群的免疫力,而不是呈阳性的情况,则需要呈额定的速度,以相对的速度逐渐降低。每4.4个月接种一次。
挪威心理健康与成瘾科研究中心,奥斯陆奥斯陆医院,挪威B心理学系,奥斯陆大学,奥斯陆,奥斯陆,奥斯陆,挪威C K.G.奥斯陆奥斯陆大学神经发育疾病中心,奥斯陆大学,挪威D D医学系,奥斯陆大学医院/奥斯陆大学/奥斯陆大学,奥斯陆大学,挪威E挪威E挪威临床医学研究所,奥斯陆大学奥斯陆大学临床医学研究所,奥斯陆大学,挪威F国家研究中心,诺威尔大学自杀研究中心,ostlo Interlo ostlo Interlo of ostlo Inspor,Oslay for ostlo Inspor of Noria法医精神病学,奥斯陆大学医院,奥斯陆,挪威H内科研究所,奥斯陆大学医院,瑞克斯托特,奥斯陆,奥斯陆,挪威I临床免疫学和传染病科。
黑色素瘤细胞的抽象背景表型异质性有助于耐药性,增加的转移和免疫逃避性疾病。各自的机制已被据报道,以塑造广泛的肿瘤内和肿瘤间表型异质性,例如IFNγ信号传导和对侵入性过渡的增殖,但是它们的串扰如何影响肿瘤的进展仍然很大程度上难以捉摸。在这里,我们将动态系统建模与散装和单细胞水平的转录组数据分析整合在一起,以研究黑色素瘤表型异质性背后的基本机制及其对适应靶向治疗和免疫检查点抑制剂的影响。我们构建了一个最小的核心监管网络,该网络涉及与此过程有关的转录因子,并确定该网络启用的表型景观中的多个“吸引子”。在三种黑色素瘤细胞系(Malme3,SK-MEL-5和A375)中,通过IFNγ信号传导和增生对浸润性转变对PD-L1的协同控制进行了模型预测。结果我们证明,包括MITF,SOX10,SOX9,JUN和ZEB1的调节网络的新兴动态可以概括有关多种表型共存的实验观察结果(增殖性,神经CREST,类似于神经crest,类似于Invasive),以及可转化的细胞检查和响应的响应,包括对响应的响应,并在响应中进行了响应,并在响应中置于某些响应中,并在构成方面构成了对响应的响应。这些表型具有不同水平的PD-L1,在免疫抑制中驱动异质性。PD-L1中的这种异质性可以通过这些调节剂与IFNγ信号的组合动力学加剧。我们关于黑色素瘤细胞逃避靶向治疗和免疫检查点抑制剂的侵入性转变和PD-L1水平的变化的模型预测在来自体外和体内实验的多个RNA-SEQ数据集中得到了验证。结论我们的校准动力学模型提供了一个测试组合疗法的平台,并为转移性黑色素瘤的治疗提供了理性的途径。可以利用对PD-L1表达,侵入性过渡和IFNγ信号传导增殖的串扰的改进理解,以改善对治疗耐药和转移性黑色素瘤的临床管理。
图 1 化学异质性诱导裂纹停止作为防止氢脆的措施的概念,以及具有奥氏体内部异质 Mn 分布的高强度钢的微观结构。a,概念示意图。b,电子背散射衍射 (EBSD) 相加图像质量 (IQ) 图,显示奥氏体-铁素体双相微观结构。c,基于扫描电子显微镜 (SEM) 的能量色散 X 射线光谱 (EDX) 图,揭示了微观结构中的整体 Mn 分布模式。化学缓冲区是奥氏体相内 Mn 高度富集 (14~16 at.% Mn) 的区域(其中一些以椭圆框标记)。d,高角度环形暗场扫描透射电子显微镜 (HAADF-STEM) 观察和 EDX 分析,显示在一个奥氏体晶簇甚至一个奥氏体晶粒内存在多个富 Mn 区。分别从标记的圆形和矩形框拍摄的选区电子衍射 (SAED) 和高分辨率 TEM (HR-TEM) 图像放在 STEM 图像的右侧。EDX 线轮廓是从 EDX 图中箭头标记的区域拍摄的。
根据美国食品药品监督管理局 (FDA) 的规定,基因治疗通过转录或翻译转移的遗传物质或特异性改变宿主(人类)基因序列来发挥作用 (FDA 2020)。基因组编辑技术,例如锌指核酸酶 (ZFN)、转录激活因子样效应核酸酶 (TALEN) 和成簇的规律间隔短回文重复序列 (CRISPR)-Cas 相关核酸酶,包括碱基编辑器,提供了各种工具来高精度地修改基因组 (Li et al. 2020)。这些基因编辑技术极大地加快了基因组编辑基础研究 (Doudna 2020) 和治疗产品的创造速度。尽管这些基因组编辑模式对于高度特异性的基因工程具有巨大的前景,但必须严格审查潜在的脱靶效应,以改进技术并优化其安全性和有效性。意外改变(也称为脱靶或脱靶编辑)的潜在影响是基因组编辑作为一种治疗策略的安全性的关键考虑因素。基因组的意外改变可能是由修改除故意针对的位点以外的 DNA 引起的(美国国家科学院 2017 年)。
简单摘要:转移性结直肠癌是一种复杂,普遍且威胁生命的疾病,受到影响其进展,进化和治疗反应的各种因素的影响。肿瘤异质性,源于遗传和非遗传因素,影响肿瘤的发育和治疗效果。可以通过对下一代测序的计算分析来评估此特征,以了解空间肿瘤的演变和多样性。分析循环肿瘤DNA可以通过实时监测肿瘤变化和治疗反应来研究时间异质性。不同的模型解释了这种异质性的起源,强调了复杂的分子途径。本综述研究了这些概念,并着重于克隆进化和肿瘤异质性的临床意义。