基于小型供体型分子,具有电子受体的有机散装异质结太阳能电池,主要是由于其长波长的吸收而显示出记录的效率,从而有效地收获了太阳能光,因此会导致高电流密度。同时,供体和受体材料的HOMO和LUMO水平的相对位置决定了开路电压。在这里,我们将超快的瞬态吸收和瞬态发光技术与专门设计的多元曲线分辨率建模一起详细解决荷载载体的产生和重组动力学。我们证明了仔细调整同型和Lumo水平的重要性,因为它们的位置决定了界面电荷转移(CT)状态的形成和重组率。不足的供体和受体Lumo水平偏移低于〜300 MEV,导致CT状态效率缓慢且效率低下,而HOMO水平低于〜100 MEV的偏移导致CT状态的快速重组,我们将其归因于从供体向受体转移的后部转移。
1. 引言近年来,OLED 技术的巨大进步 [1,2,3] 和有机光伏 (OPV) 的迅猛发展证明了有机电子器件的工业和商业潜力。有报道称,体异质结设计中的经典有机光伏器件的效率接近 20%,而钙钛矿的效率甚至超过了这个值。这些里程碑式的进步使得此类发展如今既适用于小规模也适用于大规模应用 [4,5]。尽管如此,尽管最近电子器件和传感器取得了令人瞩目的进步,但下一代 OLED、太阳能电池和印刷电路(基于有机场效应晶体管 (OFET))的制造在寻找新型更高性能半导体、基板和封装材料、电介质和加工条件 [6–11] 等方面仍面临挑战。有机材料在 RF 范围内(即兆赫甚至更高频率)在空气中的稳定运行将支持许多能够与硅基 CMOS 电路竞争的新技术的开发 [8,12–18]。当这些新型电子元件与生物传感元件相结合时,将为开发一次性诊断和药物输送技术开辟可能性[19–29]。
摘要:底物表面的状态是某些有机化合物的升华方法产生的晶体形态的关键因素之一。在这项工作中,我们成功地准备了1,2-双(2,5-二甲基-3-噻吩基)全氟细胞烯(1A)的不同形态,这些晶体被分类为空心晶体和叶片样晶体,通过与玻璃表面相处,并与玻璃表面进行玻璃表面,并与水文表面相处。为了澄清玻璃基板每个表面上的晶体生长过程,我们研究了在升华的早期阶段附着在底物表面的米勒指数,并通过X射线衍射测量和极化显微镜散发器的晶体面晶体的晶状体生长方向和晶体生长方向。结果表明,在早期和升华阶段产生的晶体面之间的异质结会导致两种不同的晶体形态。此外,已经证实,异质结在这些晶体面之间的特定方向上发生,因为这些晶体面上的晶格点非常吻合。最后,我们展示了空心和羽毛状晶体的光学行为。
太阳能电池。[2–9] 通常,会开发出由共价连接的富电子给体 (D) 和缺电子受体 (A) 单元组成的聚合物或低聚物材料。在大多数例子中,D 和 A 通过对应于分子本体异质结模型的不同长度的柔性绝缘接头连接,而只有少数具有刚性 π 共轭接头或直接连接。[1] 在双极性 D-A 聚合物中,结构具有挑战性、合成复杂性高的“双电缆”聚合物 [2–5] 最近在 SMOSC 中显示出显著提高的能量转换效率 (PCE) 超过 8.4%。在这些材料中,D 和 A 单元的层状相分离通常在较高温度(高达 230°C)下实现,从而产生具有高热稳定性和光稳定性的太阳能电池。 [1c,3–5] 目前,这些结果已经被随机D-A嵌段共聚物[6–8]所超越,其PCE达到了8.6% [7],甚至有望达到11.3% [8],达到了工业应用的10%技术壁垒。[1c,10]
摘要:本文设计了高性能NiO/β-Ga 2 O 3 垂直异质结二极管(HJD),其具有由两层不同长度的p型NiO层组成的双层结终端扩展(DL-JTE)。底部的60 nm p-NiO层完全覆盖β-Ga 2 O 3 晶片,而上部60 nm p-NiO层的几何形状比方形阳极电极大10 μm。与单层JTE相比,双层JTE结构有效抑制了电场集中,使击穿电压从2020 V提高到2830 V。此外,双p型NiO层允许更多空穴进入Ga 2 O 3 漂移层,降低了漂移电阻,比导通电阻从1.93 mΩ·cm 2 降低到1.34 mΩ·cm 2 。采用DL-JTE结构的器件功率因数(PFOM)达到5.98 GW/cm 2 ,是传统单层JTE结构的2.8倍。这些结果表明,双层JTE结构为制备高性能Ga 2 O 3 HJDs提供了一种可行的方法。
X射线检测对于在医学诊断,工业检查,安全检查,科学询问和太空探索中的应用至关重要。材料科学,电子,制造和人工智能的最新进展极大地推动了该领域的前进。在这篇综述中,我们研究了X射线检测和成像技术的基本原理和最新突破,重点是电气工程技术与X射线反应材料之间的相互作用。我们重点介绍了两种主要方法:基于半导体的直接检测和基于闪烁体的间接检测。然后,我们讨论了诸如光子计数检测器和异质结光传递器之类的创新,并强调电气工程在这些尖端检测器开发中的关键贡献。随后,我们提供了X射线检测应用的概述,范围从生物医学成像和谐振X射线技术进行材料分析到纳米分辨率电路成像。最后,评论总结了未来的研究方向,其中包括3D和4D X射线成像传感器,多光谱X射线成像以及人工智能辅助医学图像诊断。
在众多可再生能源技术中,铜铟镓硒(CIGS)、碲化镉(CdTe)、有机和钙钛矿太阳能电池是技术成熟且经过现场验证的技术。[1–6] 这些技术用于各种场合,如光伏发电厂、光伏建筑一体化、室内能源、电动汽车和小型移动电源。[7–11] 自20世纪50年代初以来,c-Si一直是全球光伏产业的主流产品。[12–14] c-Si太阳能电池的核心结构是在p(或n)型硅衬底上扩散n(或p)型发射极形成的pn同质结。 [15] 在 c-Si 太阳能电池中,这种 pn 同质结至今仍在使用,并且可以通过众所周知的钝化发射极和背面电池及相关架构(例如钝化发射极局部扩散电池和钝化发射极背面全扩散电池)实现约 25% 的高功率转换效率 (PCE)。[16–18] 与 c-Si 太阳能电池不同,CIGS 太阳能电池器件基于 p 型 CIGS 和 n 型 CdS 层之间形成的 pn 异质结。[19–22]
已经研究了光电特性中石墨烯浓度的优化,这在这项工作中基于石墨烯-CH 3 NH 3 PBI 3 PBI 3 pBI 3 PBI 3导致渐进稳定性。ch 3 NH 3 PBI 3基于晶圆的异质结太阳能电池是在大气条件下使用石墨作为孔传输层(HTL)和TIO 2作为电子传输层(ETL)的。特别是使用最佳石墨烯浓度(0.05 g/ml)实现了功率转化效率(PCE <0.01%)的可观增强。特定石墨烯组成的电荷注入速率比原始钙钛矿的速度快得多,后者暴露于接近紫外线范围内的短暂吸收。石墨烯分解增加了平均晶体尺寸,并在可见范围内降低了带隙1.32 eV。昂贵的金属(例如AG和AU)已被简单的ITO取代,这大大降低了PSC的制造成本。制造的设备暴露于高保护稳定性的情况下,没有细胞封装环境条件150天,以显示出极好的稳定性。
摘要:范德华 (vdW) 材料的垂直堆叠为二维 (2D) 系统的研究带来了新的自由度。层间耦合强烈影响异质结构的能带结构,从而产生可用于电子和光电子应用的新特性。基于微波显微镜研究,我们报告了门控二硫化钼 (MoS 2 )/二硒化钨 (WSe 2 ) 异质结构器件的定量电成像,这些器件在传输特性中表现出有趣的反双极效应。有趣的是,在源漏电流较大的区域,n 型 MoS 2 中的电子和 p 型 WSe 2 段中的空穴几乎平衡,而异质结构区域的移动电荷则耗尽。局部电导的空间演变可以归因于沿 MoS 2 − 异质结构 − WSe 2 线的横向能带弯曲和耗尽区的形成。我们的工作生动地展示了新传输行为的微观起源,这对于充满活力的范德华异质结研究领域非常重要。关键词:范德华异质结构、微波阻抗显微镜 (MIM)、反双极效应、能带排列、耗尽区
紫罗兰色磷(VP)因其独特的物理化学特性和光电应用中的潜力而引起了很多关注。尽管VP具有类似于其他2D半导体的范德华(VDW)结构,但在底物上直接合成VP仍然具有挑战性。此外,尚未证明由无转移VP akes组成的光电设备。在此,一种二辅助蒸气相传输技术旨在直接在SIO 2 /Si底物上生长均匀的单晶VP Akes。晶体VP平均的大小比以前的液体脱落样品大的数量级。用VP Akes制造的光电探测器显示出12.5 A W - 1的高响应性,响应/恢复时间为3.82/3.03 ms,暴露于532 nm光线后。此外,光电探测器显示出对高敏化光检测有益的小黑电流(<1 pa)。结果,探测率为1.38×10 13琼斯,与VDW P – N异质结探测器的检测率相当。结果揭示了VP在光电设备中的巨大潜力以及单晶半导体薄膜生长的CVT技术。