摘要:光引起的n = n双键异构化的偶氮元素位于众多应用的核心,从催化,能源储存或药物释放到光遗传学和光电学。While efficient switching between their E and Z states has predominantly relied on direct UV light excitation, a recent study by Klajn and co-workers introduced visible light sensitization of E azoarenes and subsequent isomerization as a tool coined disequilibration by sensitization under confinement (DESC) to obtain high yields of the out-of-equilibrium Z isomer.这种宿主 - 阵线方法仍在高级多组分分子系统中的适用性和功能有限的小型,最小取代的偶氮烯酸含量仍然存在。在此,我们扩展了DESC概念,以引导表面活性剂超分子在空气水接口处。利用可拍摄的芳基唑吡唑两亲物利用我们的专业知识,我们通过可逆的E -Z同源化引起了表面张力和表面过量水的实质性改变。在研究了带电和负电荷的表面活性剂与宿主的结合后,我们发现两种异构体的可见光照射时表面活性差异的程度与直接UV光激发观察到的态度相当。该方法在较大的浓度(从µm到M m)上进行了证明,并且可以使用绿色或红光同样激活,具体取决于选择的敏化剂。在复杂的分子网中,可见光的光电开关敏化的直接实现 - 展示了DESC如何改善现有光响应系统的改善,并允许开发新型应用程序,专门用可见光驱动。
尽管存在轴突行为的证据,但实验结果对轴突张力假说的全面接受提出了挑战。例如,在成年小鼠 18 和发育中的雪貂 19 的大脑中进行的残余应力切割实验表明,皮层下存在持续的张力,这可能对折叠过程产生重大影响。然而,三个主要结论挑战了基于张力的折叠假说:(1)皮层下轴突张力远离折叠区域,(2)脑回周围的周向轴突张力太弱,无法直接拉动组织,(3)观察到的脑回中残余应力的方向与模型的预测不符。19 他们的实验和模拟表明差异生长主要驱动折叠,同时允许轴突张力仍然是影响皮质折叠的制约因素。在其他研究中,轴突连接被发现与跨物种的皮质折叠成比例,20,21 导致研究人员扩展原始的轴突张力理论,提出轴突张力导致白质折叠,进而影响灰质折叠。最近,Van Essen 重新表述了原始的基于张力的形态发生理论,在细胞和组织尺度上纳入了更多促进折叠的力量。22 反驳对其理论的批评,19 他指出,体外实验可能无法捕捉体内张力,这可能会受到切片或组织水肿的影响。他还呼吁建立一个模拟框架,能够模拟皮质组织中的关键神经生物学特征,例如以不同角度甚至交叉取向的轴突。23 目前,在理解轴突张力在脑回形成过程中如何发挥作用方面仍然存在差距。例如,体内存在什么程度的轴突张力?这种张力水平是否能够触发皮质折叠?轴突网络在折叠过程中如何连接?鉴于有关大脑结构和功能之间关系的悬而未决的问题,白质尤其令人感兴趣。24 据观察,各种神经系统疾病中都存在异常的白质连接,这通常与大脑内的非典型折叠模式相吻合。当然,这些关系可能是因果关系,也可能仅仅是相关的。无论如何,更深入地了解白质连接在皮质折叠中的作用,对我们理解大脑的结构和功能具有深远的影响。
根据美德认识论摘要,教育的主要目的是发展学生的认知特征(Pritchard,2014,2016)。考虑到解决认知任务的技术工具(例如ChatGpt和其他LLM)的繁殖,教育实践应如何结合使用此类工具而不会破坏学生的认知特征?Pritchard(2014,2016)认为,可以通过将美德认识论框架与扩展认知理论相结合(Clark and Chalmers,1998)来正确解决这种“技术教育张力”(TET)。他认为,Ext使我们能够将工具视为学生认知系统的构成部分,从而将其认知性格保留在技术引起的认知减少中。本文的第一个目的是证明该解决方案不足以解决TET。第二,我的目标是提供一个互补的,更包含工具使用的框架来解决TET。然后,我将其应用于Chatgpt的教育用途,作为LLM的最著名示例,尽管我的论点可以扩展到其他属性AI系统。在教派中这样做。1.1,我介绍了普里查德(Pritchard)在教育中应用的认知和美德认识论的框架,我在这种治疗中所承诺。在教派中。2和3,我分别说明了Pritchard(2014)对TET的解决方案,我强调了他的提议的一般局限性。因此,在教派中。在教派中。最后,在教派中。4.1我将Chatgpt描述为使用Fasoli's(Fasoli,2017,2018)的认知文物分类法的计算认知伪像。4.2,我提出了我的提议,该提议结合了普里查德的美德认识论与法索利(Fasoli)(2017,2018)的认知文物分类法,以解决TET。5.1,我在教育环境中介绍了一些认识论的chatgpt。总而言之,我主张采用一种多学科方法来分析涉及AI技术(例如Chatgpt)的教育活动。
肌张力障碍是一种临床和遗传上高度异质性神经疾病,其特征是由非自愿持续或间歇性肌肉收缩引起的异常运动和姿势。最近获得了许多开创性的遗传和分子见解。在他们实现基因测试和咨询方面,它们转化为新疗法仍然有限。但是,我们开始了解共享的病理生理途径和分子机制。很明显,肌张力障碍是由涉及基底神经节,小脑,丘脑和皮质的功能失调的网络引起的。在分子水平上,不仅仅是少数几个,通常相互交织的途径与肌张蛋白症基因的致病变异有关,包括神经发育的基因转录(例如,KMT2B,THAP1),钙稳态(例如,kmt2b,thap1),钙稳定性(例如网状应激反应(例如EIF2AK2,PRKRA,TOR1A),自噬(例如VPS16)等。因此,可以将不同形式的肌张力障碍分子分组,这可能在将来促进治疗的发展。
肌张力障碍是指以非自愿,持续的肌肉收缩为特征的异质运动障碍,导致重复的扭曲运动和异常姿势。肌张力障碍具有广泛的临床范围,可以影响不同的身体区域,从而导致显着的残疾和生活质量降低。尽管在理解这种疾病方面取得了重大进展,但肌张力障碍研究仍存在许多挑战。这种迷你审查旨在突出该领域基础研究和转化研究面临的主要挑战,包括1)疾病的异质性,2)对其病理生理学的理解有限,3)使用动物模型的复杂性,4)缺乏将基因,生物化学,环形,环形,循环和临床现场学和5)有限研究的框架联系起来的框架。确定和讨论这些挑战可以帮助优先考虑研究工作和资源,强调需要进一步调查和资金,并激发针对解决这些挑战的行动。
1 卡迪夫大学神经科学与心理健康创新研究所,卡迪夫,英国,2 弗吉尼亚联邦大学神经病学系,弗吉尼亚州里士满,美国,3 吕贝克大学神经病学系,吕贝克,德国,4 巴里大学“ Aldo Moro ”基础医学科学、神经科学和感觉器官系,意大利巴里,5 伦敦玛丽女王大学沃尔夫森人口健康研究所预防神经病学部,英国伦敦,6 埃默里大学神经病学、人类遗传学和儿科学系,佐治亚州亚特兰大,美国,7 圣路易斯华盛顿大学神经病学、放射学、神经科学、物理治疗和职业治疗系,密苏里州圣路易斯,8 新墨西哥大学神经病学系,新墨西哥州阿尔伯克基,美国,9 新墨西哥 VA 医疗保健系统神经病学服务部,新墨西哥州阿尔伯克基,美国, 10 巴黎索邦大学脑研究所、法国国家健康与医学研究院、法国巴黎国家科学研究院、11 巴黎公共医院 -DMU 神经科学援助、法国巴黎、12 伦敦大学诊所神经病学研究所、英国伦敦、13 维罗纳大学神经科学、生物医学和运动系、意大利维罗纳、14 佛罗里达大学医学院神经病学系、美国佛罗里达州盖恩斯维尔、15 佛罗里达大学诺曼菲克塞尔神经疾病研究所、美国佛罗里达州盖恩斯维尔、16 肌张力障碍医学研究基金会、美国伊利诺伊州芝加哥、17 卡尔加里大学临床神经科学系和霍奇基斯脑研究所、加拿大阿尔伯塔省卡尔加里
基本上,H0张力问题需要解释为什么Planck CMB数据分析和Hubble空间望远镜的局部测量给出了H0的不同值。我们需要理解为什么在λCDM方案中,Planck CMB数据分析给出H0 = 67.4±0.5 km/s/mpc,而hubble空间望远镜的局部测量值H0 = 73.52±1.62 km/s/s/s/s/mpc
孤立的肌张力障碍的病理生理学是多因素的。与认为肌张力障碍是基底神经节障碍的历史宗旨不同,当前大多数报告称肌张力障碍是神经网络疾病。各种环境压力源和潜在的遗传因素与神经网络的异常重复性相互作用,进一步塑造了其临床特征的多样性。然而,尽管在理解疾病的病理生理学方面取得了重大进展,但肌张力障碍的治疗方法主要旨在症状管理。肉毒杆菌毒素注射到受影响的肌肉中是局灶性肌张力障碍患者的“金”标准治疗。药理学治疗(主要是抗胆碱能药物,多巴胺能和GABA能药物)和深脑刺激(DBS)在严重的广泛性或节段性肌张力障碍的情况下可用。治疗反应在患者的整个患者中都高度可变,由于副作用或其他治疗性不足因素,其有效性可能受到限制[5,86,106]。最近的估计表明,近来40%的局灶性肌张力障碍患者未接受任何治疗[86]。为了改善肌张力障碍患者的临床治疗,该研究所由美国国家神经系统疾病与中风研究所(NINDS/NIH)组织的临床工作坊(NINDS/NIH)组织,这强调了迫切需要设计有效的治疗干预措施,该干预措施基于肌张力障碍网络功能障碍的新证据[71]。
作为副作用。在帕金森氏病中,低迷症状与β振荡增加有关(13 - 30 Hz)。我们假设这种模式是特定于症状的,因此伴随着DBS诱发的肌张力障碍。方法:在6名肌张力障碍患者中,进行了具有感应的DBS设备的苍白休息记录,并使用无标记的姿势估计在停止DBS后使用5个时间点评估敲击速度。结果:停止苍白球刺激后,运动速度随时间增加(p <0.01)。线性混合效应模型表明,苍白的β活性解释了患者的运动速度方差的77%(p = 0.01)。结论:疾病实体之间的β振荡与缓慢的关联为运动回路中特定于症状的振荡模式提供了进一步的证据。我们的发现可能有助于DBS治疗的改进,因为已经可以在商业上获得了能够适应β振荡的DBS设备。©2023作者。Wiley Wendericals LLC代表国际帕金森氏症和运动障碍协会发表的运动障碍。
导致脑瘫 (CP) 的新生儿脑损伤是儿童肌张力障碍的最常见原因,肌张力障碍是一种痛苦且功能性衰弱的运动障碍。罕见的单基因肌张力障碍病因与纹状体胆碱能中间神经元 (ChI) 病理有关。然而,目前尚不清楚纹状体 ChI 病理是否也与新生儿脑损伤后的肌张力障碍有关。我们使用无偏立体学来估计新生儿脑损伤啮齿动物模型中的纹状体 ChI 和小清蛋白阳性 GABA 能中间神经元 (PVI) 数量,该模型显示出肌张力障碍和痉挛的电生理标志。新生儿脑损伤后,纹状体 ChI 数量增加,而 PVI 数量保持不变。这些数字与肌张力障碍严重程度的电生理测量值无关。这表明,尽管存在纹状体 ChI 病理,但可能不是新生儿脑损伤后肌张力障碍的主要病理生理因素。在肌张力障碍性脑性瘫痪的情况下,纹状体 ChI 数量的增加可能代表一种乘客现象或保护现象。