我们为不依赖于人类反馈的大型语言模型(LLMS)提出了一种新颖的增强学习(RL)框架。相反,我们的方法使用模型本身中的交叉注意信号来获得自我监督的奖励,从而指导对模型策略的迭代微调。通过分析模型在生成过程中如何“参加”输入提示,我们构建了及时的覆盖,重点和连贯性的度量。然后,我们使用这些措施来对候选响应进行排名或评分,提供了奖励信号,鼓励模型产生良好的一致,主题文本。在与标准策略梯度方法的经验比较和合成偏好模型的RL微调中,我们的方法在非RL基线的迅速相关性和一致性方面显示出显着的提高。虽然它尚未与完全监督的RLHF系统的性能相匹配,但它突出了使用最小的人类标记来扩展对齐的重要方向。我们提供了详细的分析,讨论潜在的局限性,并概述了将基于跨注意的信号与较少人类反馈相结合的未来工作。
两种常见的顺序决策方法是人工智能规划 (AIP) 和强化学习 (RL)。每种方法都有优点和缺点。AIP 具有可解释性,易于与符号知识集成,并且通常很高效,但需要预先指定逻辑域,并且对噪声敏感;RL 只需要指定奖励,并且对噪声具有鲁棒性,但样本效率低下,不易获得外部知识。我们提出了一种将高级规划与 RL 相结合的综合方法,保留了可解释性、迁移和效率,同时允许对低级规划操作进行鲁棒学习。我们的方法通过在 AI 规划问题的状态转换模型和马尔可夫决策过程 (MDP) 的抽象状态转换系统之间建立对应关系,从 AIP 运算符定义分层强化学习 (HRL) 中的选项。通过添加内在奖励来学习选项,以鼓励 MDP 和 AIP 转换模型之间的一致性。我们通过比较 MiniGrid 和 N 室环境中 RL 和 HRL 算法的性能来展示我们的集成方法的优势,展示了我们的方法相对于现有方法的优势。
电气和电子工程师协会 › iel7 作者 VHL Lopes · 2022 · 被引用 1 — 作者 VHL Lopes · 2022 被引用 1 与信道建模和仿真相关,特别关注... 采用的块结构可以表示标准的多帧组织。 17 页
多次无误攻击是饱和和克服导弹防御系统的最简单方法之一。为了提高针对此类攻击者群体的拦截效率,有必要根据其运动学局限性分配拦截器。此外,这样的分配方案必须是可扩展的,以应对大型方案并允许动态重新分配。在本文中,我们首先提出了这种武器目标分配(WTA)问题的新表述,并提供了使用加固学习(RL)以及贪婪的搜索算法来解决它的分散方法。从每个追随者与所有目标的角度考虑参与。同时,其他拦截器与目标群体相关,而其他团队成员则可以使用其分配和成功概率。为了改善中途轨迹的塑造,在追随者和进来的对手之间放置了静态虚拟目标。每个拦截器根据从计算有效的仿真环境中的大量场景中学到的策略动态选择目标。RL输入状态包含目标的拦截器达到性覆盖范围以及其他导弹成功的概率。RL奖励汇总了团队绩效,以鼓励在分配层面上进行合作。相关的可及性约束是通过采用拦截器运动的运动学近似来分析获得的。RL的使用确保所有拦截器的实时可扩展和动态重新分配。我们将基于RL的分散WTA和指导方案与贪婪解决方案的性能进行比较,显示了RL的性能优势。
van der waals异质结构中的Moiré超级晶格代表了高度可调的量子系统,在多体模型和设备应用中都引起了极大的兴趣。然而,在室温下,Moiré电位对光物质相互作用的影响在很大程度上仍然没有。在我们的研究中,我们证明了MOS 2 /WSE 2中的Moiré潜力促进了室温下层间激子(IX)的定位。通过执行反射对比光谱,我们证明了原子力显微镜实验支持的原子重建在修饰内部激子中的重要性。降低扭转角时,我们观察到IX寿命会更长,并且发光增强,表明诸如缺陷之类的非辐射衰减通道被Moiré电位抑制。此外,通过将Moiré超晶格与硅单模腔的整合,我们发现,使用Moiré捕获的IXS的设备显示出明显较低的阈值,与利用DelaCalized IXS的设备相比,较小的一个数量级。这些发现不仅鼓励在升高温度下在Moiré超晶格中探索多体物理学,而且还为利用光子和光电应用中的这些人工量子材料铺平了道路。
我们考虑在马尔可夫决策过程中学习,在马尔可夫决策过程中,我们没有明确地赋予重新功能,但是我们可以在这里遵守专家,以展示我们想学习的任务。此设置在应用程序(例如驾驶任务)中很有用,很难写下明确的奖励功能,以准确地指定应如何交易不同的desiderata。我们认为专家试图最大程度地发挥奖励功能,该奖励功能可作为已知功能的线性组合,并给出了一种学习专家所展示的任务的算法。我们的al-gorithm基于使用“逆增强学习”来试图恢复未知的奖励功能。我们表明,我们的算法终止了少数迭代,即使我们可能永远无法恢复专家的奖励功能,算法的策略也将达到与专家接近的绩效,在此,在此,相对于Expt exptt的未知奖励函数,在这里可以衡量。
本文分析了在线增强学习算法的复杂性,即Q学习和价值意识的异步实时版本,应用于确定性域中达到目标状态的问题。先前的工作得出的结论是,在许多情况下,Tabula Rasa强化学习是针对此类问题的指定的,或者只有在增强学习算法时才可以处理。我们表明,相反,算法是可以处理的,而任务表示或初始化的模拟更改。我们在最坏情况的复杂性上提供了紧密的界限,并显示出复杂性是如何较小的,如果系统性学习算法对状态空间或域具有某些特殊属性的初始了解。我们还提出了一种新颖的双向Q学习算法,以从所有状态到目标状态找到最佳路径,并表明它不比其他算法更复杂。
