摘要:本文介绍并讨论了现代二氧化碳捕获方法和技术(燃烧前捕获、燃烧后捕获和富氧燃烧捕获),以及这些方法的原理和现有及运行中的装置实例。介绍了所选方法和技术的主要区别,以及将其应用于新型低排放能源技术的可能性。本文讨论了以下二氧化碳捕获方法:燃烧前、基于化学吸收的燃烧后、物理分离、膜分离、化学循环燃烧、钙循环过程和富氧燃烧。总结了正在运行和正在开发的大型碳捕获利用和储存 (CCUS) 设施。2021 年,目前有 27 个商业 CCUS 设施正在运行,捕获能力高达每年 4000 万吨二氧化碳。如果所有项目都启动,全球二氧化碳捕获潜力可能超过每年捕获的 1.3 亿至 1.5 亿吨二氧化碳。本文还介绍和描述了用于比较和评估二氧化碳排放、捕获、避免以及与避免二氧化碳排放相关的成本的最流行和最发达的指标。
脑积水是一种进行性神经系统疾病,与脑脊液 (CSF) 流动异常有关,导致脑室系统主动扩张。脑积水主要有三种类型,包括非交通性或阻塞性、交通性脑脊液吸收减少和交通性脑积水分泌过多。尽管常用分流手术对脑室扩大进行对症治疗,但患者仍然会出现症状,这表明脑积水的发病机制很复杂,提示该疾病不仅仅是循环过程的紊乱。本综述旨在介绍与先天性疾病相关的人类脑积水的遗传和分子方面,例如 X 连锁脑积水,这是与 L1-CAM 突变相关的最常见的遗传性脑积水形式,以及其他复杂病理,包括原发性纤毛运动障碍和 Dandy-Walker 畸形等常见综合征。重新评估脑积水研究中的现有假设,例如纤毛假说和淋巴流中断,并理解新数据,包括参与脑脊液产生的水通道水通道蛋白 1 (AQP1) 的下调以及神经源性缺陷与组织生物力学之间的相互联系,将为改善人类脑积水的诊断和治疗策略铺平道路。
钙循环过程基于 CaCO 3 和 CaO 之间的可逆反应,近年来作为一种有前途的热化学储能系统引起了人们的极大兴趣,该系统可集成到聚光太阳能发电厂 (CaL-CSP) 中。该系统的主要缺点是 CaO 转化不完全及其烧结引起的失活。在本文中,通过使用定义明确且粒度分布较窄的标准石灰石颗粒进行实验性多循环测试,评估了粒度对这些失活机制的影响。结果表明,当在低温氦气中进行煅烧时,CaO 多循环转化主要受益于使用小颗粒。然而,只有对于低于 15 l m 的颗粒,这种增强才显著。另一方面,在高温 CO 2 中煅烧引起的强烈烧结使粒度与多循环性能的相关性降低。最后,SEM 成像表明,在氦气中进行煅烧时,活性丧失的机制主要是孔隙堵塞,而在高温 CO 2 中进行煅烧时,由于烧结导致的表面积大量损失是失活的原因。2019 作者。由 Elsevier BV 代表开罗大学出版。这是一篇根据 CC BY-NC-ND 许可证开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
摘要 当今,人才流失和人才回流的过程仍是公众热议的话题,就像 2000 多年前或欧洲第一所大学建立时一样。这场辩论远未结束,学术和政治层面都在讨论这个问题。需要从几个相互关联的层面来解决这个问题并找到解决方案:地方、地区、国家和超国家(欧盟)。在 2020 年后凝聚力政策和计划的治理中,欧盟层面应改善不同资金来源的协调。地方和地区当局最能分析社区的具体需求并找到答案,从而在减少人才流失过程的潜在负面影响方面发挥重要作用,并可以支持人才回流、人才回流和人才循环过程。地方和地区当局实施的公共政策和实践有很多例子——从支持人才迁移到这些地区/城市,到涉及发展跨国企业家网络的更复杂的措施。欧盟需要支持旨在加强欧洲不同地方和区域当局之间的学习以及地方和区域公共机构在解决人才流失问题方面的努力的计划或举措。
本章讨论了使用各种数学方法根据降雨计算雨水径流率和径流量的基础知识。为了有效地计算雨水径流,本章还介绍了这些方法试图模拟的降雨径流过程的基本原理。还提供了使用自然资源保护服务 (NRCS) 方法、合理方法和改进合理方法的指导,这些方法、方法和方法都是 NJDEP 雨水管理规则 (NJAC 7:8 et seq) 中特别要求的。雨水径流基础知识一般来说,雨水径流可以说是降雨与土地相互作用的副产品。这种相互作用是地球水在陆地和大气之间不断循环时可能经历的几种过程之一。这个循环过程在科学上称为水文循环。雨水径流只是水的众多形式之一。下图 5-1 描述了水在水文循环过程中可能采取的主要形式以及产生这些形式的各种过程。除了径流之外,这些过程还包括降水、表面或大气蒸发、植物蒸散以及渗入土壤和/或地下水。因此,以雨水形式沉淀的水可能会在地面或植物表面、大气中、各种土壤层中或水道和水体中停留一段时间。
钙循环过程基于 CaCO 3 和 CaO 之间的可逆反应,近年来作为一种有前途的热化学储能系统引起了人们的极大兴趣,该系统可集成到聚光太阳能发电厂 (CaL-CSP) 中。该系统的主要缺点是 CaO 转化不完全及其烧结引起的失活。在本文中,通过使用定义明确且粒度分布较窄的标准石灰石颗粒进行实验性多循环测试,评估了粒度对这些失活机制的影响。结果表明,当在低温氦气中进行煅烧时,CaO 多循环转化主要受益于使用小颗粒。然而,只有对于低于 15 l m 的颗粒,这种增强才显著。另一方面,在高温 CO 2 中煅烧引起的强烈烧结使粒度与多循环性能的相关性降低。最后,SEM 成像表明,在氦气中进行煅烧时,活性丧失的机制主要是孔隙堵塞,而在高温 CO 2 中进行煅烧时,由于烧结导致的表面积大量损失是失活的原因。2019 作者。由 Elsevier BV 代表开罗大学出版。这是一篇根据 CC BY-NC-ND 许可证开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
在水生生态系统的水下是一个充满生命的微观宇宙,在维持这些环境的微妙平衡中起着至关重要的作用。水生微生物学探讨了各种水体中微生物的多样性和功能,从广阔的海洋到最小的淡水池塘。在水生环境中,最丰富,最多样化的微生物群是营养循环的关键参与者。例如,硝基瘤和硝化细菌参与硝化过程,将氨转化为氮气中的硝酸盐。一些细菌也有助于有机物的降解,在营养回收中起重要作用。从微观浮游植物到较大的宏观形式,藻类是带有光合作用的阳光的主要生产者。硅藻,鞭毛藻和绿藻是水生食物网的重要贡献者,通过生产有机化合物为各种生物提供了能量。这些单细胞真核生物是水生生态系统中重要的消费者。鞭毛,纤毛和变形虫在调节细菌种群,回收养分以及作为较高营养水平的食物方面起着作用。病毒虽然不是严格归类为生物体,但在水生环境中很丰富,并影响微生物种群。噬菌体,感染细菌的病毒可以调节细菌群落,影响养分循环和微生物多样性。水生微生物对于包括碳,氮和磷循环在内的营养循环过程至关重要。细菌和藻类有助于释放有机物的细分,从而释放出其他生物可以利用的营养。藻类和蓝细菌进行光合作用,将阳光转化为化学能。这个过程不仅支持这些微生物的生长,而且还为其他水生的能源提供了主要的能量
Camellia sinensis植物的叶子用于生产茶,这是全球最消耗的饮料之一,其中包含各种有助于促进人类健康的生物活性化合物。茶种植在经济上很重要,其可持续生产在提供农业机会和降低极端贫困方面会产生重大影响。土壤参数众所周知,会影响所得叶子的质量,因此,对茶园土壤微生物的多样性和功能的理解将为利用土壤微生物群落提供洞察力,以提高茶的产量和质量。Current analyses indicate that tea garden soils possess a rich composition of diverse microorganisms (bacteria and fungi) of which the bacterial Proteobacteria, Actinobacteria, Acidobacteria, Firmicutes and Chloroflexi and fungal Ascomycota, Basidiomycota, Glomeromycota are the prominent groups.优化时,这些微生物在保持花园土壤生态系统方面的功能通过作用于养分循环过程,生物肥料,虫害和病原体的生物防治以及持续有机化学物质的生物修复来平衡。在这里,我们总结了(茶园)土壤微生物作为生物量化剂,生物控制剂以及作为改善土壤健康的生物培养基的研究研究,因此,茶的产量和质量主要集中在细菌和真菌成员上。研究了茶园中各种微生物的分子技术的最新进展。在病毒方面,关于茶园中土壤病毒的任何有益功能的信息很少,尽管在某些情况下,昆虫致病性病毒已用于控制茶叶害虫。这里报道了土壤微生物的潜力,以及用于研究微生物多样性及其遗传操作的最新技术,旨在提高茶厂的产量和质量以实现可持续生产。
河口,沿海和近岸地区是连接陆地和海洋生态系统的关键区域。自然过程和强大的人为活性都会影响这些区域中的物质转化,能量流以及微生物和矿物质相互作用(Lazar等,2017; Cooke等,2020; Liu等,2020)。微生物群落是包括碳和氮在内的生物地球化学周期的主要动力之一,并且在河口,沿海和近海生态系统的生态平衡调节中起着重要作用(Shiozaki等人,2016年; Sohm等,2016)。由于微生物和生物地球化学周期之间的紧密相互关系,有必要对这些环境中的耦合机制和生态影响进行更深入的探索。这个跨学科的主题旨在了解微生物群落在有机物分解,营养转化和温室气体排放等过程中的作用(Lin and Lin,2022; Zhang等,2023)。通过研究这些关键过程背后的微生物驱动因素,我们可以深入了解河口,沿海和近海生态系统的功能和韧性及其对环境变化的反应。本研究主题中的七种文章涵盖了世界各地的各种环境,从河口和盐沼到海水和氧气最小区域,重点关注微生物社区特征以及相关的碳和氮气循环过程。niu等。本研究主题包括有关微生物分类学和功能性漏洞的研究,可以为微生物驱动的生物地球化学过程提供基本的理解。综合了有关分布模式,组装机制,共汇率关系以及细菌的生态功能的信息
摘要。在开发具有破缺基尔霍夫对称性的非互易光学元件方面取得了重大进展,为通过重复使用发射光子将光伏 (PV) 转换效率提高到超越肖克利-奎塞尔极限铺平了道路。最近的论文分析了具有多个或无限多个多结电池的 PV 转换器,其中电池通过非互易滤波器(光学二极管)耦合,使得一个电池发出的光被另一个电池吸收。我们提出并研究了一种具有非互易外部光子回收的单电池转换器,该转换器可由同一电池重新吸收和重复使用发射光。我们从遍历性、无序性、能量可用性、信息熵和相干性的角度考虑了阳光中光子的属性,并确定了内可逆热力学对最大功率输出时转换效率施加的基本限制。我们的结果表明,具有理想多结电池的非互易转换器可以接近卡诺效率,而精确地在卡诺极限下工作则需要无数个光子循环过程。这一要求解决了光学二极管著名的热力学悖论,因为无限循环增强的电池或光学系统中的任何小耗散都将使转换器工作稳定在卡诺极限以下。我们将内可逆热力学推广到具有非零化学势的光子分布,并推导出非互易单结 PV 转换器的极限效率。评估了该转换器与可用 GaAs 太阳能电池的性能。© 作者。由 SPIE 根据知识共享署名 4.0 国际许可发布。分发或复制本作品的全部或部分内容需要完全署名原始出版物,包括其 DOI。[DOI:10.1117/1.JPE.12.032207]