胶质母细胞瘤(GBM)肿瘤是成年人中最具侵略性的原发性脑肿瘤,尽管治疗最大,但仍具有令人沮丧的预后。GBM肿瘤表现出组织缺氧,可促进肿瘤侵袭性和胶质瘤干细胞的维持,并产生总体免疫抑制景观。本文回顾了低氧条件如何与炎症反应重叠,有利于免疫抑制细胞的扩散并抑制细胞毒性T细胞的发育。免疫疗法,包括疫苗,免疫检查点抑制剂和CAR-T细胞疗法,代表了GBM治疗的有希望的途径。然而,诸如肿瘤异质性,免疫抑制性TME和BBB限制性等挑战阻碍了它们的有效性。正在积极探索解决这些挑战的策略,包括组合疗法和靶向缺氧,以改善GBM患者的预后。靶向缺氧与免疫疗法结合使用是增强治疗效率的潜在策略。
癌症治疗的效果在很大程度上受到肿瘤微环境 (TME) 中的免疫抑制机制的限制。已发现多种免疫逃逸机制。这些机制不仅包括与肿瘤、免疫或基质细胞相关的过程,还包括 TME 内的体液、代谢、遗传和表观遗传因素。免疫逃逸机制的发现使得小分子、纳米药物、免疫检查点抑制剂、过继细胞和表观遗传疗法的开发成为可能,这些疗法可以重新编程 TME 并改变宿主的免疫反应以促进抗肿瘤作用。这些方法已转化为一系列癌症治疗的突破,其中一些已在临床实践中实施。在本文中,作者概述了 TME 内一些最重要的免疫抑制机制及其对针对不同癌症的靶向治疗的影响。
肝细胞癌 (HCC) 占原发性肝癌的大部分,是全球第三大癌症相关死亡原因。多因素耐药性被认为是 HCC 治疗失败的主要原因。越来越多的证据表明,肿瘤微环境 (TME) 的成分,包括癌症相关成纤维细胞、肿瘤血管、免疫细胞、物理因素、细胞因子和外泌体可能解释 HCC 的治疗耐药机制。近年来,抗血管生成药物和免疫检查点抑制剂在 HCC 患者中显示出令人满意的效果。然而,由于肿瘤和 TME 之间的通讯增强,微环境异质性对治疗耐药的影响尤为复杂,这表明这是一个更具挑战性的研究方向。此外,据报道,来自患者活检的三维 (3D) 类器官模型更直观地充分了解 TME 在获得性耐药中的作用。因此,在这篇综述中,我们不仅关注了与 HCC 中 TME 内容相关的治疗耐药机制和目标,而且还全面描述了 3D 模型以及它们如何有助于探索 HCC 治疗。
Zhenghao Lu, 1,4 Ailing Zhong, 2,4 Hongyu Liu, 2,4 Mengsha Zhang, 2,4 Xuelan Chen, 2 Xiangyu Pan, 2 Manli Wang, 2 Xintong Deng, 2 Limin Gao, 3 Linyong Zhao, 1 Jian Wang, 2 Yi Yang, 2 Qi Zhang, 2 Baohong Wu, 2 Jianan Zheng, 2 Yigao Wang, 1 Xiaohai Song, 1 Kai Liu, 1 Weihan Zhang, 1 Xiaolong Chen, 1 Kun Yang, 1 Xinzu Chen, 1 YingLan Zhao, 2 Chengjian Zhao, 2 Yuan Wang, 2 Lu Chen, 2 Zongguang Zhou, 1 Jiankun Hu, 1, * Yu Liu, 2, * and Chong Chen 1,5, * 1 Gastric Cancer Center and Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China 2 State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China 3 Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China 4 These authors contributed equally 5 Lead contact *Correspondence: hujkwch@126.com (J.H.), yuliuscu@scu.edu.cn (Y.L.), chongchen@scu.edu.cn (C.C.)
黑色素瘤是恶性程度最高、转移性最强的肿瘤之一,免疫治疗和靶向治疗对黑色素瘤有一定的治疗作用,但相当一部分患者在治疗后仍然产生耐药性。最近的研究表明,长链非编码RNA(lncRNA)是公认的癌症调控因子,可以调控细胞增殖、转移、上皮间质转化(EMT)进展和免疫微环境等多种细胞过程。lncRNA在恶性肿瘤中的作用备受关注,而lncRNA与黑色素瘤的关系还有待进一步研究。本文综述了与黑色素瘤发生发展密切相关的抑癌和致癌lncRNA,总结lncRNA在免疫微环境、免疫治疗和靶向治疗中的作用,为临床治疗提供新的靶点和治疗方法。
摘要 - 肿瘤微环境(TME)在肿瘤的发展和进展以及耐药性中起着至关重要但机械上难以捉摸的作用。为了更好地了解复杂TME的病理生理学,已采用还原主义方法来创建称为“肿瘤芯片”的体外微流体模型。在此,我们回顾当前正在开发的癌症研究中的肿瘤芯片的制造过程,应用和局限性。肿瘤芯片具有实时观察的功能,精确控制微环境因子(例如,基质和细胞成分),以及生理上相关的流体剪切应力和扰动的应用。肿瘤芯片的应用包括药物筛查和毒性测试,药物输送方式的评估以及免疫细胞的运输和相互作用以及与原发性肿瘤部位循环肿瘤细胞的运输和相互作用。目前,肿瘤芯片的效用受到概括肿瘤生理学细微差别的能力的限制,包括细胞外基质组成和刚度,细胞成分的异质性,缺氧性梯度以及血液细胞的纳入以及血液微生物微生物中的辅助细胞的纳入。克服这些挑战并改善体外肿瘤模型的生理相关性可以在癌症研究中提供强大的测试平台,并减少对动物和临床研究的需求。
摘要:癌症对人类的生命健康构成重大威胁。化疗是目前有效的癌症治疗方法之一,但许多化疗药物具有细胞毒性、溶解性低、稳定性差、治疗窗窄、药代动力学性质不利等问题。为解决以上问题,将药物靶向递送至肿瘤细胞,降低药物的毒副作用,基于肿瘤微环境的抗肿瘤药物递送系统成为近年来的研究重点。基于二硫键的还原敏感纳米药物递送系统的构建备受关注。二硫键具有良好的还原响应性,能有效靶向肿瘤环境中的高谷胱甘肽(GSH)水平,实现药物的精准递送。为进一步增强靶向性、加速药物释放,二硫键常与pH响应的纳米载体和肿瘤细胞内高表达的配体相结合,构建药物递送系统。二硫键可以连接药物递送系统中的药物分子与聚合物分子,以及不同的药物分子与载体分子之间。本文综述了近年来研究者基于肿瘤微环境构建的基于二硫键的药物递送系统(DDS)、二硫键断裂触发条件、各种载药策略以及载体设计,并讨论了这些DDS的控释机制和效果,并进一步讨论了基于二硫键的递送系统的临床适用性以及临床转化面临的挑战。关键词:二硫键 药物递送系统 肿瘤微环境 GSH/ROS
摘要Wnt/β -catenin信号传导途径调节了肿瘤生物学的许多方面,许多研究集中在该信号通路在肿瘤细胞中的作用。但是,现在很明显,肿瘤的发展和转移取决于癌细胞及其环境之间的双向相互作用,从而形成了肿瘤微环境(TME)。在这篇综述中,我们讨论了Wnt/β -catenin信号传导如何调节TME不同组件之间的交叉相互作用,包括免疫细胞,干细胞,肿瘤脉管系统和TME的非细胞组件在肝细胞癌中。我们还研究了它们对原发性肝癌干预的临床前和临床见解,并探讨了使用Wnt/β -catenin突变作为预测免疫疗法耐药性的生物标志物的重要性。关键字Wnt/β -catenin信号传导; HCC;肿瘤微环境;免疫疗法
肿瘤微环境 (TME) 在癌症发展和转移中起着至关重要的作用。本综述总结了当前关于 TME 如何通过分子途径促进转移的研究,重点关注关键成分,例如癌症相关成纤维细胞、免疫细胞、内皮细胞、细胞因子和细胞外基质。重要发现表明,TME 内细胞通讯的改变使肿瘤细胞能够逃避免疫监视、存活并侵入其他组织。本综述重点介绍了 TGF-β 和 VEGF 信号在促进血管生成和细胞外基质重塑中的作用,从而促进转移。此外,我们探讨了受 TME 中营养物质可用性影响的肿瘤和基质细胞代谢重编程如何推动癌症进展。本研究还评估了针对这些相互作用以破坏转移的治疗策略。通过提供多学科视角,这项研究表明,了解 TME 的分子基础可以带来更有效的癌症治疗方法,并确定未来研究的潜在途径。未来对 TME 的研究应优先揭示这种复杂环境中的分子和细胞相互作用,这可能导致新的治疗策略和个性化的癌症治疗。此外,单细胞分析、空间转录组学和表观遗传分析等技术的进步为确定新的治疗靶点和提高免疫疗法的疗效提供了有希望的途径,特别是在转移的情况下。