NIST 的前身国家标准局 (NBS) 于 20 世纪 50 年代中期开始致力于满足新兴半导体行业的测量需求。虽然这项工作最初侧重于其他政府机构的晶体管应用,但在 20 世纪 60 年代初,该局向美国材料与试验协会 (ASTM) 和美国电子工业协会 (EIA) 寻求行业指导。ASTM 的首要任务是准确测量硅的电阻率。NBS 的科学家开发了一种实用的无损测量方法,其精度比以前的破坏性方法高出 10 倍。该方法是五种工业标准和广泛用于校准行业测量仪器的电阻率标准参考材料的基础。第二个项目由 EIA 专家小组推荐,旨在解决晶体管的“二次击穿”故障机理。该项目的成果得到了广泛应用,包括解决导致航天飞机发射延迟的主发动机控制问题。
NIST 的前身国家标准局 (NBS) 于 20 世纪 50 年代中期开始致力于满足新兴半导体行业的测量需求。虽然这项工作最初侧重于其他政府机构的晶体管应用,但在 20 世纪 60 年代初,该局向美国材料与试验协会 (ASTM) 和美国电子工业协会 (EIA) 寻求行业指导。ASTM 的首要任务是准确测量硅的电阻率。NBS 的科学家开发了一种实用的无损测量方法,其精度比以前的破坏性方法高出 10 倍。该方法是五种工业标准和广泛用于校准行业测量仪器的电阻率标准参考材料的基础。第二个项目由 EIA 专家小组推荐,旨在解决晶体管的“二次击穿”故障机理。该项目的成果得到了广泛应用,包括解决导致航天飞机发射延迟的主发动机控制问题。
NIST 的前身国家标准局 (NBS) 于 20 世纪 50 年代中期开始致力于满足新兴半导体行业的测量需求。虽然这项工作最初侧重于其他政府机构的晶体管应用,但在 20 世纪 60 年代初,该局向美国材料与试验协会 (ASTM) 和美国电子工业协会 (EIA) 寻求行业指导。ASTM 的首要任务是准确测量硅的电阻率。NBS 的科学家开发了一种实用的无损测量方法,其精度比以前的破坏性方法高出 10 倍。该方法是五种工业标准和广泛用于校准行业测量仪器的电阻率标准参考材料的基础。第二个项目由 EIA 专家小组推荐,旨在解决晶体管的“二次击穿”故障机理。该项目的成果得到了广泛应用,包括解决导致航天飞机发射延迟的主发动机控制问题。
NIST 的前身国家标准局 (NBS) 于 20 世纪 50 年代中期开始致力于满足新兴半导体行业的测量需求。虽然这项工作最初侧重于其他政府机构的晶体管应用,但在 20 世纪 60 年代初,该局向美国材料与试验协会 (ASTM) 和美国电子工业协会 (EIA) 寻求行业指导。ASTM 的首要任务是准确测量硅的电阻率。NBS 的科学家开发了一种实用的无损测量方法,其精度比以前的破坏性方法高出 10 倍。该方法是五种工业标准和广泛用于校准行业测量仪器的电阻率标准参考材料的基础。第二个项目由 EIA 专家小组推荐,旨在解决晶体管的“二次击穿”故障机理。该项目的成果得到了广泛应用,包括解决导致航天飞机发射延迟的主发动机控制问题。
修读“项目报告”的学生须修读以下七门选修学科单元/科目,以获得21 学分;修读“实习及报告”的学生须修读以下八门选修学科单元/科目,以获得24 学分︰ 集成电路研究方法和应用选修45 3 数字集成电路选修45 3 数据转换器集成电路设计选修45 3 柔性交流输电系统选修45 3 电源管理集成电路设计选修45 3 生物医学工程专题选修45 3
随着数字化的进步,我们的日常生活和工作世界越来越多地受到电子产品的渗透。电子产品不仅存在于手机、平板电脑和办公电脑中,还可以调节我们的能源供应、控制移动互联网的数据流并实现安全、网络化和自动化的移动。电子处理器也是人工智能(AI)运行的大脑。在医疗保健和工业制造等领域,电子产品确保来自德国的服务和产品在功能和质量方面满足最高要求。这使得(微)电子成为数字化时代繁荣的重要基础:通过提供改善生活质量并确保德国未来的价值创造和就业。
近年来,微电子行业取得了惊人的增长,通过在集成电路 (IC) 中集成大规模晶体管,设计和开发了功耗极低的高性能计算机。该 ME 课程旨在让学生深入了解使用各种电子设计自动化 (EDA) 工具研究和设计最先进的微电子系统。课程设计符合现代 IC 设计行业标准。以下重点领域提供兼职和全日制博士学位 * 仪器仪表与控制 * 通信工程、网络 * RF、微波、天线设计和无线系统 * 电力系统与电气工程、可再生能源、智能电网 * 电力电子与驱动器
入学考试的第一部分是笔试,持续 75 分钟。最高可得 100 分。考试由 10 道题组成,题目从上面列出的两个主题领域中选择。主题领域及其内容由学习计划委员会确定。问题的分配将由学术人员进行,以便每个问题的难度相同。这些作业在公布之前严格保密。笔试的作业和写作均以英语进行。
随着对小型和廉价设备的需求不断增长,该领域不断扩大。鉴于现代 MOS 技术中工艺几何尺寸的大幅缩小,主要关注领域通常是高性能 VLSI 电路设计和电子设计自动化 (EDA) 中的紧迫问题。该领域的研究包括 VLSI 电路设计、可重构计算、新兴纳米结构设备、可制造性设计、容错系统、三维集成、光电设备、嵌入式系统和硬件安全。
关于专业软件对“微电子学基础”课程的计算机支持:教学实验结果 Olena Semenikhina 1、Marina Drushlyak 1、Serhii Lynnyk 1、Inna Kharchenko 2、Hanna Kyryliuk 1、Olena Honcharenko 1 1 Makarenko 苏梅国立师范大学,Romenska 街,87,苏梅,乌克兰 2 苏梅国立农业大学,Herasym Kondratiev 街,160,苏梅,乌克兰 摘要 – 了解现代计算机的工作理念对于未来的 IT 专家的培养非常重要。计算系统中间发生的过程基于物理设备的工作,建议在模拟软件中对其进行建模。作者考虑了选择物理过程模拟软件的问题。微电子课程教学经验允许选择两种仿真软件:Proteus 和 Multisim。在 Makarenko Sumy 国立师范大学(乌克兰)开展了一项教学实验,旨在选择最佳仿真软件来支持未来 IT 专家和计算机科学教师学习的微电子课程。通过对仿真软件的个体特性进行比较分析,Proteus 更受青睐。然而,教学实验的结果证实了使用 Multisim 的可行性。关键词 – 未来 IT 专家的准备、计算机建模、仿真软件、Proteus、Multisim。DOI:10.18421/TEM91‐43 https://dx.doi.org/10.18421/TEM91‐43