有针对性的新生儿超声心动图(TNE)涉及使用综合超声心动图来评估心血管生理学和新生儿血液动力学,以增强新生儿重症监护病房中的诊断和治疗精度。自2011年TNE指南的最后一次发布以来,该领域已经通过发展形式化的新生儿血液动力学奖学金,临床计划以及科学知识的扩展以进一步增强临床护理而成熟。最常见的指示包括促进专利导管的血流动力学意义,评估急性和慢性肺动脉高压,评估右室和左心室收缩期和/或舒张功能,以及筛选毛骨 - 拨号液以及/或拨号液的筛选。新生儿心脏点的护理超声(CPOCUS)是一种有限的心血管评估,可能包括线尖端评估,心包积液的识别以及低血容量从严重的心肌降低性障碍性症状的疾病中,血液动力学上无稳定性的新生儿。本文档是美国超声心动图学会工作组的产物,由新生儿学,儿科心脏病学,儿科心脏超声检查和新生儿学-Cocus组成。本文档提供了(1)关于TNE和CPOCUS的目的和理由的指导,(2)概述了标准TNE和CPOCUS评估的组成部分,(3)(3)疾病和/或基于培训和/或基于Clin-Clinical contne的指标,(4)基于培训和能力的评估要求和CPOCUS和CPOCUS和CPOCUS和CPOCUS和CPOCUS和CPOCUS和CPOCUS和CPOCUS,以及(5)的评估。(J Am Soc Echocardiogr 2024; 37:171-215。)
图5说明了独立的组织病理学评估的结论。通过Echo2Pheno(ACNAT2,CMAS,DNAJB14,ECHS1,ECHS1,ERGIC2,GSTM1)验证了六项无关紧要的研究。在那些情况下,组织学检查在所有研究中揭示了结构正常的心脏(图5b),确认我们的发现。四个手动得出的大量研究通过Echo2Pheno(CISD1,DMD,FabP2,ZFP280D)进行了验证。四分之一的CISD1突变体显示出中度的LV扩张,而DMD突变体没有LV改变,而是局灶性心肌炎症,支持本研究中的EF和FS改变。FABP2心脏正常,而四个检查的ZFP280D雄性突变体中有两个lvs扩张,炎症性浸润,纤维化和坏死灶中的一个
结果,大多数硼砂在结构上是正常的(119/146,81.5%),并且针对每个性别的繁殖特异性超声心动图值产生,因为女性的重量明显小于男性(30.4±3.8 kg 3.8 kg,38.3 kg vs 38.3±4.1 kg 4.1 kg,expec -tiversively timely;在64/119(53.8%)正常犬中鉴定出生理心脏杂音。36(30.2%)结构正常的狗具有痕量或轻度的二尖瓣反流,而43(36.1%)具有痕量或轻度的三尖端反流。在21只狗(14.4%)中鉴定出结构性心脏病,其中包括9只狗(6.2%),患有扩张的心肌病(DCM),9只狗(6.2%),患有B1骨 - TOUS-二尖瓣疾病(MMVD)和3(2.1%)的狗和3(2.1%)狗患有先天性异常。七只狗(4.8%)有模棱两可的异常。在随访期间,新狗被诊断出具有隐匿性DCM(n = 3),模棱两可的DCM(1)和B1 MMVD(2)。两只狗最初被诊断为DCM(1个神秘和1个模棱两可),在饮食变化后归一化。
结果:该研究包括1307例HFREF患者中位随访16.3个月(IQR 8.0-30.6)。中位年龄为65岁;男性为68%,而57%是白人。在随访中,有39%(n = 506)开发了HFIMPEF,而61%(n = 801)具有持久的HFREF。多元COX回归模型确定性别,种族合并症,超声心动图和亚位术肽是HFIMPEF的重要协变量(p <0.05)。与持续的HFREF组相比,HFIMPEF组的生存率更好(p <0.001)。超声心动图和实验室轨迹之间的轨迹不同。
对心血管系统疾病的研究越来越多地在动物模型中进行。猪是生物医学研究中常见的模型动物。本研究的目的是确定雄性和雌性猪(Sus scrofa domestica)心脏的正常超声心动图值。本研究使用的猪为本研究中使用的猪12头,年龄为3至4个月,平均体重为55公斤(52至69公斤)。使用频率为 2.5-6.0 MHz 的相控阵探头换能器对麻醉状态下的猪进行右胸骨旁 (RPS) 长轴 (LAx) 和短轴 (SAx) 位置的经胸超声心动图检查。 RPS-SAx 位置旨在评估猪心脏左心室的形状和结构,而 RPS-LAx 位置旨在比较心室之间的尺寸并观察心脏二尖瓣的运动。超声心动图检查结果显示,可以看到猪左心室的结构有室间隔(IVS)、左心室(LV)、左心室壁(LVW)、心包(P)、乳头肌(PM)、右心室(RV)。研究结果显示,心率(HR)、舒张末期左室内径(LVIDd)、每搏输出量(SV)参数的数值在男性和女性之间表现出显著不同的结果,而其他参数的结果不显著。这些猪的正常心脏超声值可以作为以猪为动物模型进行进一步心血管研究的参考。
抽象目标建立的心力衰竭(HF)风险的临床前成像评估基于宏观结构心脏重塑。鉴于微观结构改变也可能影响HF风险,尤其是在女性中,我们检查了微观结构改变与事件HF之间的关联。我们研究了n = 2511名成年参与者(平均年龄65.7±8.8岁,56%的女性),他们在基线时没有心血管疾病。,我们基于高频谱信号强度系数(HS-SIC)对超声心动图的纹理分析来量化微结构变化。我们检查了其与性行为和性别特定的COX模型的关系,这些模型涉及传统的HF风险因素和宏观结构的改变。结果我们观察到94个新的HF事件在7。4±1.7岁以上。HS-SIC较高的个体患有HF的风险增加(HS-SIC中的HR 1.67,95%CI 1.31至2.13; P <0.0001)。调整年龄和降压药的使用,这种关联在女性中很重要(p = 0.02),但没有男性(p = 0.78)。调整传统危险因素(包括体重指数,总/高密度脂蛋白胆固醇,血压特征,糖尿病和吸烟)减弱了女性的关联(HR 1.30,P = 0.07),并在这些风险因素的主要方面看到HS-SIC的HF风险中介。然而,除了这些危险因素外,调整了相对壁厚(代表宏观结构改变)后,女性中与HF的HF与HF的关联(HR 1.47,p = 0.02)仍然显着。结论心脏微结构改变与HF的风险升高有关,尤其是在女性中。微观结构改变可能会识别个人从风险因素到临床HF的发展的性别途径。
胸外按压是心肺复苏 (CPR) 期间促进全身循环的主要手段。最佳胸外按压可使心脏骤停患者获得良好的复苏效果。尽管最近的 CPR 指南建议使用实时反馈设备来在复苏期间维持高质量的 CPR,但它很少与良好的复苏效果相关[1-3]。原因之一可能是未监测胸外按压的位置。先前基于胸部计算机断层扫描的研究还发现,目前建议的胸外按压位置太高,无法有效压迫左心室 (LV) [4,5]。经食道超声心动图 (TEE) 被认为是一种很好的方法,可用于识别心脏骤停的可纠正原因以及监测 CPR 质量和位置[6-8]。它还可以在复苏期间不中断胸外按压的情况下识别受外胸按压的心脏结构[9]。因此,我们可以从心脏骤停患者 TEE 图像中评估胸外按压的准确位置和外部胸外按压产生的收缩功能。这可能验证 CPR 期间促进左心室收缩功能的最佳胸外按压方法[10-12]。分割左心室对于确定胸外按压的位置和获得心脏功能定量评估指标(如舒张末期容积、收缩末期容积、面积和射血分数)是必不可少的。人们进行了许多尝试来分割左心室。Noble 等[13]基于轮廓跟踪方法,采用了基于卡尔曼滤波器的心外膜和心内膜边界跟踪系统。Bosch 等[14]将边界检测的主动外观模型改进为主动外观运动模型,可实现全自动、强大且连续的左心室检测。大多数心脏图像,如超声波图像和核磁共振成像(MRI),都有模糊的边界和严重的噪声;因此,分析这些图像需要时间,而且结果可能因人而异。人工神经网络已被提出,因为它们提供了很高的分析精度,并使医学图像的泛化成为可能[15,16]。Smistad 等人[17]建议使用 U-Net [18] 的深度卷积神经网络进行 LV 分割模型,它由一个编码器-解码器组成,在生物医学图像中显示出鲁棒的分割模型。然而,U-Net 并没有考虑所有语义特征在解码过程中的贡献。因此,Moradi 等人[19]开发了一种改进的 U-Net,称为多特征金字塔 U-Net,其中通过在 U-Net 解码器路径的所有级别上链接特征图来补充特征。然而,现有的方法有一个局限性,即它们无法识别阴影和 LV 之间的模糊边界。此外,由于胸外按压,CPR 期间获取的 TEE 图像比正常超声心动图噪声更大。我们通过应用残差特征聚合方法和各种注意技术开发了基于 U-Net 的网络。我们的模型不仅展示了使用挤压和激励块以及残差块的强大特征提取技术,而且还关注更重要的特征。工作流程如图 1 所示。下一节描述了数据组织、深度学习的数据增强技术以及我们模型的结构。
背景:在当代医疗保健领域,实验室测试是推动精准医疗进步的基石。这些测试提供了对各种医疗状况的深入见解,从而促进了诊断、预后和治疗。然而,某些测试的可及性受到诸如高成本、专业人员短缺或地理差异等因素的阻碍,这对实现公平的医疗保健构成了障碍。例如,超声心动图是一种极其重要且不易获得的实验室测试。对超声心动图的需求不断增加,凸显了更高效的调度协议的必要性。尽管有这种迫切的需求,但在这一领域的研究却有限。目标:本研究旨在开发一种可解释的机器学习模型,以确定需要超声心动图检查的患者的紧急程度,从而帮助确定调度程序的优先级。此外,本研究旨在利用机器学习模型的高可解释性,深入了解影响超声心动图预约优先级的关键属性。方法:基于来自电子健康记录的大量现实世界超声心动图预约数据集(即 34,293 个预约),进行了实证和预测分析以评估患者的紧急程度,该数据集包含管理信息、转诊诊断和潜在患者状况。我们使用了一种最先进的可解释机器学习算法,即最佳稀疏决策树 (OSDT),该算法以高准确性和可解释性而闻名,来研究与超声心动图预约相关的属性。结果:与表现最佳的基线模型相比,该方法表现出令人满意的性能(F 1 -score=36.18%,提高了 1.7% 和 F 2 -score=28.18%,比表现最佳的基线模型提高了 0.79%)。此外,由于其高度可解释性,结果为通过从 OSDT 模型中提取决策规则来识别紧急患者进行测试提供了宝贵的医学见解。结论:该方法表现出了最先进的预测性能,证实了其有效性。此外,我们通过将 OSDT 模型得出的决策规则与既定的医学知识进行比较来验证这些决策规则。这些可解释的结果(例如 OSDT 模型中的属性重要性和决策规则)强调了我们的方法在优先考虑患者紧急程度的超声心动图预约方面的潜力,并且可以扩展到使用电子健康记录数据优先考虑其他实验室测试预约。
我们提供了四个不同的带注释的超声心动图视频,涵盖正常病例、房间隔缺损 (ASD) 病例和肺动脉高压 (PAH) 病例。此数据集已删除有关患者的所有私人信息。医院授权此数据集并获得伦理批准。图 1 显示了四个不同的 ASD 患者示例。已标记异常区域以便于理解。图 2 和图 3 也分别展示了四个不同的 PAH 患者和正常病例示例。对于这三个图,垂直字母表示不同的情况,而横轴是按顺序每 10 帧采样的帧。有关完整的视频可视化,请参阅 supplementary.zip 中的附件以获取更多数据集示例。
摘要:医疗保健目前显示出心力衰竭(HF)的发病率和患病率,尤其是在发达国家,但只有一个子集接受适当的疗法,以保护心脏免受适应不良的过程,例如纤维化和肥大。适当的高级HF标记尚未确定,这将有助于选择最合适的疗法并避免重大合规性问题。斑点跟踪超声心动图(Ste)是一个不错的选择,是一种非侵入性成像技术,能够在各种条件下评估心脏变形。几项多中心研究和荟萃分析表明,在HF的早期和晚期,Ste的临床应用和准确性,以及与左心室(LV)充满压力和心肌氧的相关性。此外,Ste有助于评估LV辅助装置(LVAD)植入后的右心室衰竭(RVF)的可靠预测指标。但是,Ste以其局限性而闻名。尽管如此,它已被证明可以解释症状和体征,并且也是准确的预后剂。这篇综述的目的是检查Ste在早期评估心肌功能障碍及其与右心导管插入术(RHC)参数的相关性中的优势,该参数在HF患者的管理中应具有显着的临床相关性。