图 9.2. 心包膜和心壁层。围绕心脏的心包膜由三层和心包腔组成。心壁也由三层组成。心包膜和心壁共用心外膜。来自 Betts et al.,2013。根据 CC BY 4.0 许可。[图 9.2 图片说明。]
抽象心律不齐在马匹中很常见,可能导致性能下降和猝死。对马匹在马匹中使用心脏起搏器的研究很少,并且缺乏描述和开发设备植入程序的技术。因此,这项研究旨在开发一种使用视频手术在马中植入心外膜起搏器的新技术。使用五个马尸体用作应用视频手术技术的模型,用于通过跨尖和肋间进入植入心外膜起搏器的植入。该技术有效地将起搏器电极固定在用作研究模型的五个尸体的左心顶点。手术程序的侵入性最低,平均手术时间为44分钟。在手术结束时进行的马尸检期间未观察到病变。通过胸腔镜检查和肋间进入的起搏器植入具有创新性,代表了治疗严重心律不齐的马的潜在治疗新颖性。关键字:心律不齐,心脏,心脏,左心室,视频手术
抽象背景:计算机断层扫描(CT)图像上左心房(LA)和心外膜脂肪组织(EAT)体积的术前估计与心房颤动(AF)复发的风险增加有关。我们旨在设计一个基于学习的工作流程,以提供对心房,心包和饮食的可靠自动分割,并为未来在AF管理中的应用提供。方法:本研究招募了157例AF患者,他们在2015年1月至2017年12月在台北退伍军人综合医院之间接受了首次导管的消融。LA,右心庭(RA)和心包的三维(3D)U-NET模型用于开发用于总,LA-EAT和RA-EAT自动分割的管道。 我们将心包内的脂肪定义为组织,衰减在-190至-30 HU之间,并量化了总食物。 在心包内的LA或RA的扩张性内部边界和心内膜壁之间的区域用于检测归因于脂肪的体素,从而估计La-EAT和RA-EAT。 结果:LA,RA和心包分割模型的骰子系数分别为0.960±0.010、0.945±0.013和0.967±0.006。 3D分割模型与LA,RA和心包的地面真相良好相关(r = 0.99,所有人的P <0.001)。 我们提出的食品,LA-EAT和RA-EAT方法的骰子系数分别为0.870±0.027、0.846±0.057和0.841±0.071。 结论:我们提出的用于自动LA,RA和饮食分割的工作流程在CT图像上使用3D U-NETS对AF患者可靠。用于开发用于总,LA-EAT和RA-EAT自动分割的管道。我们将心包内的脂肪定义为组织,衰减在-190至-30 HU之间,并量化了总食物。在心包内的LA或RA的扩张性内部边界和心内膜壁之间的区域用于检测归因于脂肪的体素,从而估计La-EAT和RA-EAT。结果:LA,RA和心包分割模型的骰子系数分别为0.960±0.010、0.945±0.013和0.967±0.006。3D分割模型与LA,RA和心包的地面真相良好相关(r = 0.99,所有人的P <0.001)。我们提出的食品,LA-EAT和RA-EAT方法的骰子系数分别为0.870±0.027、0.846±0.057和0.841±0.071。结论:我们提出的用于自动LA,RA和饮食分割的工作流程在CT图像上使用3D U-NETS对AF患者可靠。
。cc-by-nc-nd 4.0国际许可证是根据作者/资助者提供的,他已授予Medrxiv的许可证,以永久显示预印本。(未通过同行评审认证)
成功的申请者将加入 CHU Sainte-Justine 研究中心的 Marín-Juez 实验室,在这里申请者将可以使用最先进的设施和技术平台,包括先进的成像平台(光片、旋转盘共聚焦、多光子、STED 超分辨率等)、基因组学(DropSeq、10x、Illumina Novaseq、Visium)、IPSC 细胞重编程和生物信息学平台。CHU Sainte-Justine 研究中心提供了一个蓬勃发展的科学环境,成功的申请者将有机会与多学科科学团队合作并与才华横溢的临床医生和研究人员合作。研究项目描述我们之前已经确定冠状动脉网络再生是心脏再生的关键决定因素(Marín-Juez 等人,PNAS 2016;Wang 等人,Development 2024)。我们的工作揭示了冠状动脉网络补充的控制机制,包括支持心肌细胞再生和介导冠状动脉-心外膜相互作用的血管支架的形成(Marín-Juez 等人,Dev Cell 2019;El-Sammak 等人,Circ Res 2022)。基于这些发现,我们现在旨在阐明心脏内皮、心外膜和免疫系统成分如何协同调节组织补充,以及它们在心肌细胞再生中发挥作用的具体机制。所需培训和个人资料我们正在寻找具有生物科学博士学位和组织修复/再生、细胞、分子生物学或遗传学实验室经验的候选人。以前与斑马鱼、成像和组织学打交道的经验非常有价值,但并非必不可少。强烈鼓励具有共聚焦/光片成像和/或基因组工程经验的候选人申请。具有出色协作和沟通技巧的申请人将获得优先考虑。
人类的心脏分为四个腔:上部左心房和右心房;下部左心室和右心室。通常将右心房和心室统称为右心,将左侧心房和心室统称为左心。在健康的心脏中,血液由于心脏瓣膜的作用而单向流过心脏,以防止回流。心脏被包裹在一个保护囊即心包中,其中还含有少量液体。心壁由三层组成:心外膜、心肌和心内膜。心壁是一块巨大的肌肉,可以不自主地工作。这意味着我们不必在做其他事情时担心确保心脏在跳动。我们的心跳由大脑的一小部分(脑干和第 X 脑神经)控制,这一部分还控制其他不自主的事情,如呼吸、消化等。
使用COL1A1在不同阶段的RNA染色,我们将心脏成纤维细胞分为四个发育阶段。通过分析来自两个小鼠菌株的18个阶段成纤维细胞的SCRNA-SEQ谱,我们确定了显着的异质性,从而保留了其前体细胞中的谱系基因表达。在主要成纤维细胞种群中,我们发现了各种细胞簇中WT1,TBX18和ALDH1A2基因的差异表达。谱系追踪研究表明,WT1-和TBX18阳性成纤维细胞源自相应的心外膜细胞。此外,使用有条件的基于DTA系统的消除,我们确定了成纤维细胞在早期胚胎和心脏生长中的关键作用,但在新生儿心脏的生长中却没有。此外,我们确定了细胞外基质基因和成纤维细胞 - 毛皮细胞配体 - 受体 - 受体相互作用的区域和阶段相关的表达。这种全面的理解阐明了心脏发育中的成纤维细胞功能。
Cre-loxp介导的遗传谱系追踪系统对于构建单细胞后代或细胞种群的命运图是必不可少的。了解心脏祖细胞的结构层次结构促进了心脏发育中的细胞命运和起源问题。基于前瞻性Cre-loxP的谱系 - 追踪系统已被用于精确分析心内膜细胞(ECS),心外膜细胞和心肌细胞的命运确定和发育特征。因此,新兴的谱系追踪技术推进了心血管相关细胞可塑性的研究。在这篇综述中,我们说明了新兴CRE-LOXP的原理和方法,用于基于心脏中不同细胞谱系的轨迹监测的轨迹监测。使用遗传谱系追踪技术对单细胞后代的分化过程的全面证明为心脏发展和稳态做出了杰出的贡献,为先天性和心血管疾病(CVD)的组织再生提供了新的治疗策略。
可以执行 3D WMT 分析。要将 3D WMT 应用于数据集,用户必须提供一些参考点。在选定的 A 平面(通常是心尖四腔视图)中,用户必须为 WMT 固定三个参考点,两个位于二尖瓣水平的 LV 底部,一个位于心尖。B 平面使用相同的三个点,B 平面是与心尖四腔视图成 90° 正交的平面。通过这六个参考点,系统将自动检测心内膜边界。心外膜边界可以手动输入,也可以通过设置心肌的默认“厚度”来输入。在舒张末期参考框架处检测到心肌边界后,如果需要,用户可以在起始图像处校正 LV 参考的形状。当用户接受了舒张末期 LV 的形状时,可以开始 3D 壁运动跟踪过程。 20 秒内即可获得 3D WMT 的结果,并提供许多参数来解释心肌功能。
最新的估计是2019年全球疾病研究负担,表明全球约有5600万人有心力衰竭(HF)诊断,这是残疾和死亡的主要原因[1]。缺血性和高血压心脏病分别是男性和女性HF的主要原因[2]。在1990年至2019年之间,HF病例有所增加(尤其是在年轻患者中),但两种性别的年龄标准化率略有下降[2,3]。在发达国家中,已知HF的患病率通常估计为一般成人人口的1%至2%[3]。但是,与基于仅包含已建立案例的注册表的数据相比,超声心动图筛查研究的患病率约为4.2%,这一数字可能是一个更现实的估计值[3]。实际上,由于定义和人口的差异,有关HF的流行病学研究具有一定的局限性,而且由于大多数研究依赖于通常缺乏重要的临床信息或医院记录中的行政数据,这些数据无法捕获在门诊环境中接受护理的患者。hf在两种主要表型中呈现 - HF,射血分数降低(HFREF)和HF,并保留了射血分数(HFPEF),具有额外的表型,并具有轻度降低的射血分数(HFMREF)。尽管临床表现相似,但导致HFREF和HFPEF的机制是不同的[4]。支持这一观察结果的事实是,是基石的神经激素疗法