通过在人类诱导性多能干细胞衍生的心肌细胞 (iPSC-CM) 中进行精确的基因调节并使用可扩展的全光学电生理学平台进行后续表型分析,可以揭示基因-表型关系。近期 CRISPR 衍生的可逆基因抑制或激活技术 (CRISPRi/a) 可以为人类功能基因组学方面的此类努力提供帮助。我们着手表征 CRISPRi 在后分化 iPSC-CM 中的性能,以关键的心脏离子通道基因 KCNH2、KCNJ2 和 GJA1 为目标,并使用全光学工具提供对心脏复极、静息膜电位稳定性和传导特性影响的多参数量化。更有效的 CRISPRi 效应物(例如 Zim3)和优化的病毒递送可使性能得到改善,与使用 CRISPRi iPSC 系相当。当 CRISPRi 部署在非分裂分化心脏细胞中时,确认轻微但具体的表型变化是朝着更全面的临床前心脏毒性测试和未来体内治疗应用迈出的重要一步。关键词:CRISPRi、iPSC-CM、心脏电生理学、离子通道、KCNH2、KCNJ2、GJA1、全光电生理学、光遗传学、光学映射
摘要增强子协调基因表达程序,驱动多细胞发育和谱系承诺。因此,增强子的遗传变异被认为通过改变细胞命运承诺而导致发育疾病。然而,虽然已经鉴定出许多含有变异的增强子,但内源性测试这些增强子对谱系承诺的影响的研究却很少。我们进行了单细胞 CRISPRi 筛选,以评估与先天性心脏缺陷 (CHD) 遗传研究有关的 25 种增强子和假定的心脏靶基因的内源性作用。我们鉴定出 16 种增强子,它们的抑制会导致人类心肌细胞 (CM) 分化缺陷。重点 CRISPRi 验证筛选显示,抑制 TBX5 增强子会延迟从中期到晚期 CM 状态的转录转换。两个 TBX5 增强子的内源性遗传缺失表型复制表观遗传扰动。总之,这些结果确定了心脏发育的关键增强子,并表明这些增强子的错误调节可能导致人类患者出现心脏缺陷。
1 上海大学理学院数学系,上海 200444;xuyaochen@shu.edu.cn 2 上海大学生命科学学院,上海 200444;mql1117@shu.edu.cn (QM);ssdrg@shu.edu.cn (JR) 3 上海海事大学信息工程学院,上海 201306;lchen@shmtu.edu.cn 4 上海交通大学医学院 & 中国科学院上海生命科学研究院干细胞生物学重点实验室,上海 200030;gw_1992@sjtu.edu.cn 5 广东农商职业技术学院计算机科学系,广州 510507; kyfeng@gdaib.edu.cn 6 中国科学院上海营养与健康研究所,中国科学院生物医学大数据中心,中国科学院计算生物学重点实验室,上海 200031; huangtao@sibs.ac.cn 7 中国科学院上海营养与健康研究所,中国科学院组织微环境与肿瘤重点实验室,中国科学院大学,上海 200031 * 通讯地址:zbzeng@shu.edu.cn(ZZ);caiyudong@staff.shu.edu.cn(YC);电话:+86-21-66136132(YC)† 这些作者对这项工作做出了同等贡献。
在一项随机的安慰剂对照双盲试验中,31例慢性HFREF患者被随机分为合成的人酰基酰基蛋白(0.1 µg/kg/min)或安慰剂在120分钟内静脉内静脉内。主要结果是心输出量的变化(CO)。用酰基酶处理分离的小鼠心肌细胞,并评估了分数缩短和钙瞬变。酰基蛋白但不安慰剂增加了心输出量(酰基血解剂:4.08±1.15至5.23±1.98 L/min;安慰剂:4.26±1.23至4.11±1.99 L/min,p <0.001)。酰基蛋白会在左心室射血分数和节段性纵向菌株和三尖瓣环形平面收缩期偏移中显着增加中风体积和标称性。对血压,心律不齐或缺血没有影响。心率名义上降低(酰基血清素:71±11至67±11 b.p.p.m.;安慰剂69±8至68±10 B.P.)。在心肌细胞中,酰基蛋白会增加分数缩短,不会影响细胞Ca 2+瞬变,而肌钙蛋白I磷酸化降低。通过酰基毒素拮抗剂D-Lys 3。
抽象的长期非编码RNA(LNCRNA)成为心脏物理学和疾病的关键调节因子,尽管揭示其作用方式的研究仍然仅限于很少的例子。我们最近确定了PCHARME,这是一种与染色质相关的LNCRNA,其在小鼠中的功能敲除导致心脏肌肉的肌生成和形态重塑。在这里,我们结合了基因表达(CAGE),单细胞(SC)RNA测序和整个原位杂交分析的帽盖 - 分析,以研究PCHARME心脏的表达。自心肌生成的早期步骤以来,我们发现lncRNA专门局限于心肌细胞,在那里它有助于形成含有MATR3的特定核冷凝物,以及心脏发育的重要RNA。与这些活性的功能性意义一致,小鼠的PCHARME消融导致心脏囊肿的成熟延迟,这最终导致心室心肌的形态改变。由于心肌的先天异常在人类上与临床相关,并且患者倾向于重大并发症,因此控制心脏形态的新基因的鉴定变得至关重要。我们的研究为促进心肌细胞成熟的新型LNCRNA介导的调节机制提供了独特的见解,并与Charme基因座有关未来的疗法应用。
成人弥漫性神经胶质瘤是最困难的脑部疾病之一,部分原因是缺乏对肿瘤迁移的解剖学起源和机制的明确性。虽然研究神经瘤传播网络的重要性至少已久至80年,但直到最近才出现了在人类进行此类调查的能力。在这里,我们全面回顾了脑网络映射和神经胶质瘤生物学的领域,为有兴趣合并这些调查领域的研究人员提供了入门,以进行转化研究。具体来说,我们追踪了脑网络图和神经胶质瘤生物学中思想的历史发展,突出了探索网络神经科学,弥漫性神经胶质瘤和神经胶质瘤 - 神经元相互作用的临床应用的研究。我们讨论了已合并神经肿瘤学和网络神经科学的最新研究,发现神经胶质瘤的空间分布模式遵循内在的功能和结构性脑网络。最终,我们呼吁从网络神经影像中做出更多贡献,以实现癌症神经科学的转化潜力。
1。tsao,C。W。; Aday,A。W。; Almarzooq,Z。i。; Alonso,A。; Beaton,A。Z。; Bittencourt,M。S。; Boehme,A。K。; Buxton,A。E。; Carson,A。P。; Commodore-Mensah,Y。; Elkind,M。S. V。; Evenson,K。R。; Eze-nliam,c。 Ferguson,J.F。; Generoso,G。; Ho,J。E。; Kalani,r。 Khan,S.S。; Kissela,B。M。; Knutson,K。L。; Levine,D。A。;刘易斯(T. T.) Liu,J。; Loop,M.S。; MA,J。; Mussolino,M。E。; Navaneethan,S.D。; Perak,A。M。; Poudel,R。; Rezk-Hanna,M。; Roth,G。A。; Schroeder,E。B。; Shah,S.H。; Thacker,E。L。; Vanwagner,L。B。; Virani,S.S。; Voecks,J。H。; Wang,N。Y。; Yaffe,K。; Martin,S。S.,《心脏病和中风统计》 -2022更新:美国心脏协会的报告。循环2022,145(8),E153-E639。2。Wang,T。; Chen,L。; Yang,t。;黄,p。 Wang,L。; Zhao,L。;张,S。;是的,Z。; Chen,L。; Zheng,Z。; Qin,J。,先天性心脏病和心血管疾病的风险:队列研究的元分析。 J Am Heart Assoc 2019,8(10),E012030。 3。 McDonagh,T。A。; Metra,M。; Adamo,M。; Gardner,R。S。; Baumbach,A。; Bohm,M。; Burri,H。;巴特勒(J。) Celutkiene,J。; O。Chioncel; Cleland,J。G. F。; Coats,A。J. S。; Crespo-Leiro,M。G。; D. Farmakis;吉拉德(M。)海曼人, Hoes,A。W。; Jaarsma,T。; Jankowska,E。A。; Lainscak,M。; Lam,C。S. P。; Lyon,A。R。; McMurray,J。J. V。; Mebazaa,A。; Mindham,R。; Muneretto,C。; Francesco Piepoli,M。; Price,s。; Rosano,G。M. C。; Ruschitzka,f。; Kathrine Skibelund,A。; Group,E。S. C. S. D.,2021年ESC诊断和治疗急性和慢性心力衰竭的指南。 EUR HEART J 2021,42(36),3599-3726。 4。 循环2022,145(18),E876-E894。 5。Wang,T。; Chen,L。; Yang,t。;黄,p。 Wang,L。; Zhao,L。;张,S。;是的,Z。; Chen,L。; Zheng,Z。; Qin,J。,先天性心脏病和心血管疾病的风险:队列研究的元分析。J Am Heart Assoc 2019,8(10),E012030。3。McDonagh,T。A。; Metra,M。; Adamo,M。; Gardner,R。S。; Baumbach,A。; Bohm,M。; Burri,H。;巴特勒(J。) Celutkiene,J。; O。Chioncel; Cleland,J。G. F。; Coats,A。J. S。; Crespo-Leiro,M。G。; D. Farmakis;吉拉德(M。)海曼人, Hoes,A。W。; Jaarsma,T。; Jankowska,E。A。; Lainscak,M。; Lam,C。S. P。; Lyon,A。R。; McMurray,J。J. V。; Mebazaa,A。; Mindham,R。; Muneretto,C。; Francesco Piepoli,M。; Price,s。; Rosano,G。M. C。; Ruschitzka,f。; Kathrine Skibelund,A。; Group,E。S. C. S. D.,2021年ESC诊断和治疗急性和慢性心力衰竭的指南。EUR HEART J 2021,42(36),3599-3726。4。循环2022,145(18),E876-E894。5。Heidenreich,P。A。; Bozkurt,b。 Aguilar,d。; Allen,L。A。; Byun,J.J。; Colvin,M。M。; Deswal,A。; Drazner,M。H。; Dunlay,S.M。; Evers,L。R。; Fang,J.C。; Fedson,S。E。; Fonarow,G。C。; Hayek,S.S。; Hernandez,A。F。; Khazanie,P。; Kittleson,M.M。; Lee,C。S。; Link,M。S。; Milano,C。A。; Nnacheta,L.C。; Sandhu,A。T。;史蒂文森(L. W。); Vardeny,O。;背心,A。R。; Yancy,C。W.,2022 AHA/ACC/HFSA心脏管理管理指南:执行摘要:美国心脏病学院/美国心脏协会临床实践指南联合委员会的报告。 Paik,D。T。; Cho,s。;天,L。; Chang,H。Y。; Wu,J。C.,心血管发育,疾病和医学中的单细胞RNA测序。 nat Rev Cardiol 2020,17(8),457-473。 6。 沃特那纳州,M。;冈田(T. 方法Mol Biol 2018,1816,107-116。 7。 Guo,G。R。; Chen,L。; Rao,M。; Chen,K。; Song,J。P。; Hu,S。S.,一种修饰方法,用于分离人类心肌细胞对心脏疾病进行建模。 J Trans Med 2018,16(1),288。 8。 Ostap,E。M.,2,3-丁烷二氧化硅(BDM)作为肌球蛋白抑制剂。 J肌肉res Cell Motil 2002,23(4),305-8。 9。 Daly,M。J。; Elz,J.S。; Nayler,W。G.,大鼠心脏中的鉴定和钙悖论。 Circ Res 1987,61(4),560-9。 10。 siegmund,b。; Klietz,T。; Schwartz,P。; Piper,H。M.,临时收缩封锁可防止用缺氧抗氧化的心肌细胞中的超级合同。 Am J Physiol 1991,260(2 pt 2),H426-35。 11。Heidenreich,P。A。; Bozkurt,b。 Aguilar,d。; Allen,L。A。; Byun,J.J。; Colvin,M。M。; Deswal,A。; Drazner,M。H。; Dunlay,S.M。; Evers,L。R。; Fang,J.C。; Fedson,S。E。; Fonarow,G。C。; Hayek,S.S。; Hernandez,A。F。; Khazanie,P。; Kittleson,M.M。; Lee,C。S。; Link,M。S。; Milano,C。A。; Nnacheta,L.C。; Sandhu,A。T。;史蒂文森(L. W。); Vardeny,O。;背心,A。R。; Yancy,C。W.,2022 AHA/ACC/HFSA心脏管理管理指南:执行摘要:美国心脏病学院/美国心脏协会临床实践指南联合委员会的报告。Paik,D。T。; Cho,s。;天,L。; Chang,H。Y。; Wu,J。C.,心血管发育,疾病和医学中的单细胞RNA测序。 nat Rev Cardiol 2020,17(8),457-473。 6。 沃特那纳州,M。;冈田(T. 方法Mol Biol 2018,1816,107-116。 7。 Guo,G。R。; Chen,L。; Rao,M。; Chen,K。; Song,J。P。; Hu,S。S.,一种修饰方法,用于分离人类心肌细胞对心脏疾病进行建模。 J Trans Med 2018,16(1),288。 8。 Ostap,E。M.,2,3-丁烷二氧化硅(BDM)作为肌球蛋白抑制剂。 J肌肉res Cell Motil 2002,23(4),305-8。 9。 Daly,M。J。; Elz,J.S。; Nayler,W。G.,大鼠心脏中的鉴定和钙悖论。 Circ Res 1987,61(4),560-9。 10。 siegmund,b。; Klietz,T。; Schwartz,P。; Piper,H。M.,临时收缩封锁可防止用缺氧抗氧化的心肌细胞中的超级合同。 Am J Physiol 1991,260(2 pt 2),H426-35。 11。Paik,D。T。; Cho,s。;天,L。; Chang,H。Y。; Wu,J。C.,心血管发育,疾病和医学中的单细胞RNA测序。nat Rev Cardiol 2020,17(8),457-473。6。沃特那纳州,M。;冈田(T.方法Mol Biol 2018,1816,107-116。7。Guo,G。R。; Chen,L。; Rao,M。; Chen,K。; Song,J。P。; Hu,S。S.,一种修饰方法,用于分离人类心肌细胞对心脏疾病进行建模。 J Trans Med 2018,16(1),288。 8。 Ostap,E。M.,2,3-丁烷二氧化硅(BDM)作为肌球蛋白抑制剂。 J肌肉res Cell Motil 2002,23(4),305-8。 9。 Daly,M。J。; Elz,J.S。; Nayler,W。G.,大鼠心脏中的鉴定和钙悖论。 Circ Res 1987,61(4),560-9。 10。 siegmund,b。; Klietz,T。; Schwartz,P。; Piper,H。M.,临时收缩封锁可防止用缺氧抗氧化的心肌细胞中的超级合同。 Am J Physiol 1991,260(2 pt 2),H426-35。 11。Guo,G。R。; Chen,L。; Rao,M。; Chen,K。; Song,J。P。; Hu,S。S.,一种修饰方法,用于分离人类心肌细胞对心脏疾病进行建模。J Trans Med 2018,16(1),288。8。Ostap,E。M.,2,3-丁烷二氧化硅(BDM)作为肌球蛋白抑制剂。J肌肉res Cell Motil 2002,23(4),305-8。9。Daly,M。J。; Elz,J.S。; Nayler,W。G.,大鼠心脏中的鉴定和钙悖论。 Circ Res 1987,61(4),560-9。 10。 siegmund,b。; Klietz,T。; Schwartz,P。; Piper,H。M.,临时收缩封锁可防止用缺氧抗氧化的心肌细胞中的超级合同。 Am J Physiol 1991,260(2 pt 2),H426-35。 11。Daly,M。J。; Elz,J.S。; Nayler,W。G.,大鼠心脏中的鉴定和钙悖论。Circ Res 1987,61(4),560-9。 10。 siegmund,b。; Klietz,T。; Schwartz,P。; Piper,H。M.,临时收缩封锁可防止用缺氧抗氧化的心肌细胞中的超级合同。 Am J Physiol 1991,260(2 pt 2),H426-35。 11。Circ Res 1987,61(4),560-9。10。siegmund,b。; Klietz,T。; Schwartz,P。; Piper,H。M.,临时收缩封锁可防止用缺氧抗氧化的心肌细胞中的超级合同。Am J Physiol 1991,260(2 pt 2),H426-35。11。Kreimer,S。; Binek,A。; Chazarin,b。 Cho,J。H。; Haghani,A。;赫顿,A。; Marb,N。E。; Mastali,M。;迈耶(J. G。) Ribiero Mesquita,T。R。;歌曲,Y。; Van Eyk,J。; Parker,S。,通过纳米曲线双陷阱单柱液体色谱法对器官衍生的异质细胞群的高吞吐量单细胞蛋白质组学分析。 Biorxiv 2023。Kreimer,S。; Binek,A。; Chazarin,b。 Cho,J。H。; Haghani,A。;赫顿,A。; Marb,N。E。; Mastali,M。;迈耶(J. G。) Ribiero Mesquita,T。R。;歌曲,Y。; Van Eyk,J。; Parker,S。,通过纳米曲线双陷阱单柱液体色谱法对器官衍生的异质细胞群的高吞吐量单细胞蛋白质组学分析。Biorxiv 2023。
介绍在生命的第一周,小鼠能够再生受伤的心肌(1,2)。与具有再生能力的其他物种类似,鼠后心脏的再生是通过现有心肌细胞的扩散来实现的(1,3,4)。促脂性免疫细胞的浸润(5),血管生成和动脉生成(6)和心脏组织的神经(7)神经(7)有助于这种短暂的再生能力。在此期间,即使心肌细胞中存在DNA合成,它也主要与核核酸化有关(8)。,已经提出了多倍体或双核心肌细胞的出现,是斑马鱼和鼠后再生后再生能力丧失的原因(9,10)。此外,在较大的哺乳动物和人类中,心肌细胞正在从单核和增殖状态过渡到一生多核的态度(11-13)。几项研究已经解决了再生下降的基础机制,并报告了涉及心肌细胞增殖丧失的转录和代谢机制(14)。ERBB2对心肌细胞的代谢重编程对于再生心脏中心肌细胞的增殖至关重要(15,16)。此外,河马途径效应子YAP的一种活跃形式通过激活胚胎和增殖基因表达程序的表达来促进心脏再生(17)。此外,小型非编码microRNA,例如miR-15(2),mir-199(18)和miR-34a(19)调节心肌细胞增殖。人类基因组含有16,000至100,000长的非编码RNA(LNCRNA)(20,21)。lncRNA被定义为未转化为蛋白质的200个核苷酸的转录本(22)。他们可以调节其他基因的表达(23),并以细胞类型特异性方式表达(22)。
心肌缺血再灌注(I/R)损伤的特征是心肌细胞中线粒体损伤。跨膜bax抑制剂基序含有6(TMBIM6)和Presenilin-2(PS2)参与多个线粒体途径;因此,我们研究了这些蛋白质对急性再灌注损伤期间线粒体稳态的影响。心肌后再灌注胁迫损害心肌功能,诱导结构异常,并通过破坏野生型小鼠的线粒体完整性,但在TMBIM6转基因小鼠中促进心肌细胞死亡。我们发现TMBIM6直接与PS2结合并促进其转录后降解。在小鼠中敲出PS2可通过改善线粒体完整性来减少I/R损伤引起的心脏功能障碍,炎症反应,心肌肿胀和心肌细胞死亡。这些发现表明,足够的TMBIM6表达可以防止心脏I/R损伤期间PS2的积累,从而抑制了再灌注诱导的线粒体损伤。因此,TMBIM6和PS2是治疗心脏再灌注损伤的有希望的治疗靶标。
成人心脏发展肥大,以减轻心室壁压力并响应增加的工作量而保持心脏功能。尽管病理肥大通常会导致心力衰竭,但生理肥大可能是受保护的。心脏特异性的过表达脂质 - 滴头蛋白peripin 5(PLIN5)促进了心脏肥大,但目前尚不清楚这种反应是否有益。我们分析了人类左心室的RNA测序数据,并表明CAR-DIAC PLIN5表达与心脏收缩 - 相关过程的上调相关。为了研究心脏PLIN5水平升高如何影响心脏收缩性,我们用PLIN5(MHC-PLIN5小鼠)的心脏特异性过表达产生了小鼠。这些显示的小鼠左心室质量和心肌细胞大小增加但心脏功能保留。定量蛋白质组学鉴定出肌质/内质网Ca 2+ ATPase 2(SERCA2)为PLIN5相互作用蛋白。原位接近连接测定进一步确认了PLIN5/SERCA2相互作用。实时成像在收缩期间在细胞内Ca 2+释放中表现出不折痕,在松弛过程中去除Ca 2+,而MHC-PLIN5与WT心肌细胞中的SERCA2功能。这些结果确定了PLIN5通过增强的Ca 2+信号传导改善心脏收缩性的作用。