我们考虑三层 F 1 F 2 F 3 约瑟夫森结,它们在二维上是有限的,并且每个铁磁体 F i (i=1,2,3) 具有任意磁化强度。三层夹在两个 s 波超导体之间,它们具有宏观相位差∆ φ。我们的结果表明,当磁化具有三个正交分量时,超电流可以在∆ φ = 0 处流动。利用我们的广义理论和数值技术,我们研究了电荷超电流、自旋超电流、自旋扭矩和态密度的平面空间分布和∆ φ 依赖性。值得注意的是,当将中心铁磁层的磁化强度增加到半金属极限时,自偏置电流和感应二次谐波分量显著增强,而临界超电流达到其最大值。此外,对于很宽范围的交换场强度和方向,系统的基态可以调整为任意相位差 ϕ 0 。对于中间层 F 2 中的中等交换场强度,可以出现 ϕ 0 状态,从而产生超导二极管效应,从而可以调整 ∆ ϕ 以产生单向无耗散电流。自旋电流和有效磁矩揭示了半金属相中的长距离自旋扭矩。此外,态密度揭示了相互正交磁化配置的零能量峰的出现。我们的结果表明,这种简单的三层约瑟夫森结可以成为产生实验上可获得的长距离自偏置超电流和超流二极管效应特征的绝佳候选者。
目前还缺少关于纳米级限制下固体热性质的理论和机制理解。我们开发了一种薄膜的理论量子限制描述,它预测了热容量的新物理定律。具体而言,由于薄膜限制抑制了振动模式,振动态密度 (VDOS) 在频率上偏离德拜二次定律,而是频率的立方。这导致热容量的温度依赖性为 ∼ T 4 而不是德拜的 ∼ T 3 定律。此外,新理论预测随着纳米薄膜厚度的增加,热容量会线性增加。这两种依赖性与最近关于 NbTiN 薄膜的实验数据高度一致。
德克萨斯大学奥斯汀分校微电子研究中心,美国德克萨斯州奥斯汀 78758 电话:(512) 471-1627,传真:(512) 471-5625,电子邮件:k-onishi@mail.utexas.edu 摘要 研究了合成气体 (FG) 退火对 HfO 2 MOSFET 性能的影响。结果表明,高温 (500-600°C) FG 退火可显著改善 N 和 PMOSFET 的载流子迁移率和亚阈值斜率。这种改善与界面态密度的降低有关。还在 HfO 2 沉积之前用 NH 3 或 NO 退火进行表面处理的样品上检查了 FG 退火的有效性。结果发现,FG 退火不会降低 PMOS 负偏置温度不稳定性特性。
晶格和晶胞。布拉维晶格。晶面和方向。米勒指数。堆积能和结构。共价晶体和离子晶体。分子晶体。晶体结构中的缺陷。点缺陷和扩展缺陷。缺陷热力学。- 晶体结构:测定和分析干涉和衍射:一般概念。晶相衍射。劳厄定律和布拉格定律。傅里叶变换和互易晶格。单晶、多晶和纳米晶体。非晶相中的衍射。- 固态电子系统电场和磁场下的电荷载体和传输。自由电子和束缚电子。布洛赫定理和能带结构。电子的色散关系。态密度。费米-狄拉克分布。金属、半导体、绝缘体。纳米材料的应用。- 半导体和应用半导体中的电荷载体。电子、空穴及其运动。载流子浓度和质量作用定律。直接和间接带隙半导体。掺杂。一些半导体器件:pn结和二极管、晶体管。在光子学和电子学中的应用。- 晶格振动和热性质 晶格和分子振动:比较。振动色散关系。声学和光学分支。声子。振动态密度和德拜频率。固体中的振动光谱。固体中的比热。杜隆珀蒂定律。低温。- 介电和光学性质 极化率和介电函数。对电磁辐射的宏观响应。边界处的吸收、反射、弹性和非弹性扩散。洛伦兹模型。复折射率和介电函数。自由电子和等离子体。在能量学、催化和环境中的应用。激光在化学和材料科学中的应用。
首次尝试评估半导体天然橡胶的电荷传输特性。合成了四种不同比例的碘-橡胶复合材料,并通过电流密度-电压特性 (JV) 和阻抗谱测试了电荷传输。确定了最佳迁移率值的最佳掺杂比,并讨论了注入势垒高度对迁移率的影响。还尝试将态密度 (DOS) 与迁移率和掺杂比关联起来。在相同的环境和实验条件下,将半导体天然橡胶的传输特性与最流行的 p 型材料之一聚(3-己基噻吩-2,5-二基)(P3HT)进行了比较,以证明其作为经济高效且绿色的替代有机半导体的潜力。
术语 TiN:氮化钛 MgO:氧化镁 TMN:过渡金属氮化物 FCC:面心立方 B1:岩盐结构 UHV:超高真空 TEM:透射电子显微镜 STEM:扫描透射电子显微镜 HAADF:高角度环形暗场 DFT:密度泛函理论 MEAM:改进的嵌入原子方法 XRD:X 射线衍射 ToF-ERDA:飞行时间弹性反冲检测分析 BF:明场 FIB:聚焦离子束 SEM:扫描电子显微镜 FFT:快速傅里叶变换 DOS:态密度 FWHM:半峰全宽 GSFE:广义堆垛层错能 OP:重叠布居
摘要 — 本文证明了在深低温下 FDSOI 器件 TCAD 模拟的可行性。为此,麦克斯韦-玻尔兹曼载流子统计被具有 3D 态密度的费米-狄拉克积分的解析近似所取代。通过求解二维泊松方程来研究器件静电,而使用漂移扩散模型模拟传输。我们探讨了温度对线性和饱和区器件性能的影响以及短沟道效应的影响,这些影响考虑了各种栅极和间隔物长度、室温和深低温。最后,将得到的结果与一些实验数据进行了比较,强调了 TCAD 模拟在提供器件物理和性能见解方面的作用。关键词 — 低温电子学、FDSOI、TCAD 模拟
目前,人们对研究二维电子系统特性的兴趣源于其在纳米级半导体结构中的应用前景。在这样的系统中,特性依赖性的量子维度量通常具有振荡特性(Korotun,2015 年;Kurbatsky 等人,2004 年;Dmitriev 等人,2012 年;Dmitriev 等人,2007 年;Korotun,2014 年;Korotun 等人,2015 年;Dymnikov,2011 年;Gulyamov 等人,2019 年,Gulyamov 等人,2020 年)。在二维半导体中,宏观能量特性(例如态密度、电子有效质量和费米能量)取决于量子阱的厚度。假设材料厚度d的大小将与低维半导体中电子的德布罗意波长相等。
这里,我们展示了透明导电和半规则库仑阻塞,可通过施加栅极电压进行调节,即使在超低温(T 基区 ≃ 15 mK)实验中也是如此。这是基于最近的发现,即可以使用半金属铋实现与平面 MoS 2 的室温欧姆接触:[38] 由于费米能级钉扎是由界面处金属和半导体态的杂化引起的,[39] 降低费米能级附近的接触态密度违反直觉地实现了可调谐性和透明导电。虽然(可能是基板引起的)无序仍然存在,但我们的数据表明接触处明显没有电荷陷阱,并且接触电阻很低。这代表着接触质量的显着改善。在低温极限 T ≤ 100 mK,我们观察到单能级传输的迹象。
狄拉克材料中完美锥形色散的偏差(例如质量或倾斜的存在)增强了电子传输的控制和方向性。为了识别这些特征,我们分析了掺杂大质量倾斜狄拉克系统中光学反射率的热导数光谱。确定态密度和化学势是使用热卷积计算有限温度下光学电导率张量的初步步骤。温度变化引起的反射变化可以清楚地识别光学响应中的临界频率。通过测量热导数光谱中的这些光谱特征,可以确定能隙和能带结构倾斜。对各种低能狄拉克汉密尔顿量的光谱进行了比较。我们的研究结果表明,热差光谱有望成为一种探测二维狄拉克费米子带间跃迁的有价值技术