这项研究的主要目的是评估失眠症 - 焦虑合并症与大型前瞻性队列中2型糖尿病(T2D)的关联。我们从法国Nutrinet-Santé同类中选择了没有糖尿病的成年人,他们完成了Spielberger州特征焦虑量表的特质焦虑量表(STAI-T,2013–2016)和睡眠问卷(2014年);失眠是根据既定标准定义的。使用多变量COX模型,我们比较了4组的T2D风险:没有失眠或焦虑(参考),单独失眠,单独焦虑(STAI-T≥40)以及合并症的焦虑和失眠。在35,014名参与者中(平均基线年龄:52.4±14.0岁; 76%的女性),378(1.1%)在平均5.9±2.1岁的平均随访中发展了T2D。总体而言,28.5%的样本单独患有焦虑症,仅7.5% - 单独使用症状,而12.5%则是疾病。在完全调整的模型中,较高的T2D风险与焦虑 - 刺激性合并症有关(HR = 1.40; 95%CI 1.01,1.94),但与没有失眠或焦虑的组相比,每种疾病分别与每个疾病相比。这些发现支持了成年人群的合并症与入射T2D之间的正相关。使用精神障碍临床诊断的未来研究可以证实发现的结果,并指导糖尿病预防计划。
1植物生物学和生理学系,科学系,Yaunde I大学,Yaunde P.O. 盒337,喀麦隆2植物科学系,农业学院,沃利塔·索多大学,索多P.O. Box 138,埃塞俄比亚3 UMR AGAP,CIRAD,CIRAD,F-34398法国4 AGAP Institute,Institut Agro Institute,Institut Agro,Cirrad,Cirrad,Inrae,Inrae,Inrae,Montpellier大学,F-34060,F-34060 Montpellier,France 5 Center 5 Center 5 Center D'Etudes d'Etudes r l l l l'Am pout l'Am per l'am per l'am s f l' (ceraas/isra), route de kkombole, È è s bp 3320, senegal 6 dispos and recherche et de profile, innovation et am é lioration éri é tale en ed Afrique de l'ouest (Iavao), ceras, route de Khombole, È s bp 3320, Senegal 7 Department of Agriculture, Higher Technical Teachers Training College, University of Buea,Kumba P.O. 盒子249,喀麦隆8园艺和植物科学系,吉玛大学吉玛大学农业与兽医学院,Jimma P.O. 框378,埃塞俄比亚 *通信:joel-romamaric.nguepjop@cirad.fr1植物生物学和生理学系,科学系,Yaunde I大学,Yaunde P.O.盒337,喀麦隆2植物科学系,农业学院,沃利塔·索多大学,索多P.O.Box 138,埃塞俄比亚3 UMR AGAP,CIRAD,CIRAD,F-34398法国4 AGAP Institute,Institut Agro Institute,Institut Agro,Cirrad,Cirrad,Inrae,Inrae,Inrae,Montpellier大学,F-34060,F-34060 Montpellier,France 5 Center 5 Center 5 Center D'Etudes d'Etudes r l l l l'Am pout l'Am per l'am per l'am s f l' (ceraas/isra), route de kkombole, È è s bp 3320, senegal 6 dispos and recherche et de profile, innovation et am é lioration éri é tale en ed Afrique de l'ouest (Iavao), ceras, route de Khombole, È s bp 3320, Senegal 7 Department of Agriculture, Higher Technical Teachers Training College, University of Buea,Kumba P.O. 盒子249,喀麦隆8园艺和植物科学系,吉玛大学吉玛大学农业与兽医学院,Jimma P.O. 框378,埃塞俄比亚 *通信:joel-romamaric.nguepjop@cirad.frBox 138,埃塞俄比亚3 UMR AGAP,CIRAD,CIRAD,F-34398法国4 AGAP Institute,Institut Agro Institute,Institut Agro,Cirrad,Cirrad,Inrae,Inrae,Inrae,Montpellier大学,F-34060,F-34060 Montpellier,France 5 Center 5 Center 5 Center D'Etudes d'Etudes r l l l l'Am pout l'Am per l'am per l'am s f l' (ceraas/isra), route de kkombole, È è s bp 3320, senegal 6 dispos and recherche et de profile, innovation et am é lioration éri é tale en ed Afrique de l'ouest (Iavao), ceras, route de Khombole, È s bp 3320, Senegal 7 Department of Agriculture, Higher Technical Teachers Training College, University of Buea,Kumba P.O.盒子249,喀麦隆8园艺和植物科学系,吉玛大学吉玛大学农业与兽医学院,Jimma P.O. 框378,埃塞俄比亚 *通信:joel-romamaric.nguepjop@cirad.fr盒子249,喀麦隆8园艺和植物科学系,吉玛大学吉玛大学农业与兽医学院,Jimma P.O.框378,埃塞俄比亚 *通信:joel-romamaric.nguepjop@cirad.fr
植物植物层由微生物群落定植,这些群落可能会影响其宿主的舒适性和生长,包括宿主对植物病原体的韧性。在塑造细菌和真菌内生菌的组合中,有多个因素,包括宿主遗传学和环境,包括宿主遗传学和环境。在这项工作中,宿主遗传学在植物 - 微生物组装组装中的作用是在感染了真菌病原体Neonectria ditissima的苹果(Malus X Forefla)树中的全同胞家族中研究的。定量性状基因座(QTL)分析表明,有多个基因座影响了单个内生类群的丰富性,而大多数QTL对内生细长的丰度具有中度到大作用(20-40%)。QTL区域在LG 1、3、4、5、10、12、13、14和15上被证明会影响多个分类单元。只有一小部分总体分类组合物的变化受宿主基因型的影响,主要成分的QTL命中显着,分别解释了细菌和真菌组成的总方差<8%和<7.4%。识别的QTL中有四个与对新生儿ditissima的耐受性相关的先前识别区域共定位。这些结果表明,构成苹果内生菌组成的遗传基础,并且可以通过育种来定制苹果中的微生物 - 宿主相关性。
大豆 [ Glycine max (L.) Merr.] 的产量和成熟度之间存在不利的相关性,这使得育种者很难创造出适应特定种植区域的高产品种。大豆品种根据其光周期敏感性分为 12 个成熟度组,而光周期敏感性主要由一些主要成熟度基因(E 基因)的等位基因变异决定(Langewisch 等人,2017 年)。尽管新大豆品种的营销是根据其光周期适应性针对特定种植区域进行的,但不利条件的出现会限制特定区域可实现的最大产量。因此,成功新品种的产量要求因种植区域而异,相同的产量在一个地区被认为非常好,但在另一个地区却被认为太低。因此,育种者必须谨慎确定他们的综合育种目标,以在所需的成熟度范围内实现尽可能高的产量。
摘要具有数以千计的基因组关联研究对复杂特征鉴定的基因座,需要在体内模型系统中可靠,迅速推断大量候选基因的作用。基于F 0斑马鱼中的基于CRISPR/CAS9的功能屏幕代表这样的系统。然而,到目前为止使用的负面对照 - 包括加扰的指南RNA(GRNA),灭活的CAS9和假注射 - 不会引起与CRISPR/CAS9相同的细胞和有机反应,并且可能会加剧结论。在这里,我们表明,靶向KITA促进了成功的诱变,更高质量的成像数据以及病例和对照的有效分类的有效的光学预筛查。我们鉴定并测试了两个靶向具有类似高诱变效率和对色素作用的kita的GRNA,并且没有对心脏代谢性状的脱靶效应或主要影响。我们提出了几种方法,这些方法将得出有效的,公正的结论。
ORCID编号:0000-0001-7717-893X (H.-JL); 0000-0001-6234-9265(左翼); 0000-0001-5664-2975(JX); 0000-0003-2291-1836(喀山); 0000-0002-5036-9426 (马萨诸塞); 0000-0002-1034-2771 (MJ); 0000-0002-5379-4348(黄页); 0000-0003-0295-6594(Y型); 0000-0002-3176-739X(BH); 0000-0002-1129-9584(JL); 0000-0003-4725-238X (FG); 0000-0002-4498-7412 (加大); 0000-0003-0380-8104(左); 0000-0003-4105-9693(全球); 0000-0003-1992-1857 (YD); 0000-0002-8532-6450(XY); 0000-0001-6803-2672 (ZL); 0000-0003-0618-4640 (Mi.Z.); 0000-0001-9903-0629(日本); 0000-0001-9751-7679(MB); 0000-0001-5080-4478(WS); 0000-0001-9095-7110 (HC); 0000-0001-9821-3829 (XS); 0000-0002-1046-7902(西联); 0000-0002-0183-5574 (Y.卢); 0000-0001-8988-3644 (刘Y.); 0000-0002-5538-7236(江苏); 0000-0002-7062-3495 (YQ); 0000-0002-4269-7649 (DJ); 0000-0001-9000-335X (ARF); 0000-0001-8650-7811 (Jianbing Y.)
1医院Del Mar Research Institute(IMIM),流行病学与公共卫生计划,Aiguader博士,88,08003西班牙巴塞罗那; 2英国伦敦大学伦敦大学伦敦大学学院终身健康与老化部门MRC; 3人口健康科学,布里斯托尔医学院,布里斯托尔大学,布里斯托尔BS 8 200亿英国; 4挪威奥斯陆公共卫生学院生育与健康中心,挪威0463; 5 Blanquerna卫生科学学院,拉蒙·劳尔大学,西班牙巴塞罗那08025; 6生物医学研究财团 - 肥胖与营养的病理生理学(Ciberobn),萨鲁德·卡洛斯三世研究所,蒙福特·德·莱莫斯3-5,08029西班牙马德里; 7巴塞罗那全球健康研究所(Isglobal),Aiguader博士88,08003,西班牙巴塞罗那; 8生物医学研究联盟 - 西班牙马德里的Salud Carlos III研究院(Cibercv); 9μEdical研究委员会环境与健康中心,公共卫生学院,伦敦帝国学院,伦敦W2 1pg,英国; 10雅典学院生物医学研究基金会系统生物学中心,希腊雅典115号; 11英国伦敦帝国理工学院公共卫生学院流行病学和生物统计学系12,维多利亚大学医学院 - 加泰罗尼亚大学中心大学,CTRA。de Roda,70,08500 VIC,西班牙;和13 Universitat Pompeu Fabra(UPF),Aiguader博士88,08003,巴塞罗那,西班牙
大豆是全球种子蛋白和油的主要来源,在种子中平均成分为40%蛋白质和20%的油。这项研究的目的是确定使用种子蛋白和油含量的定量性状基因座(QTL),该蛋白质和油含量利用跨平均蛋白质含量线构建的种群,PI 399084,PI 399084到另一个具有低蛋白质含量值的线,PI 507429,均来自USDA Soybeanbeanbeanebean soybeanbean soybeanbean soybeanbeanbean collection。在四年内,对重复的近交系(RIL)人群,PI 507429 X PI 399084进行了评估(2018-2021);使用近红外反射光谱分析种子的种子蛋白质和油含量。使用测序使用基因分型重新列出了重组近交系和两个父母。总共12,761个分子标记物来自基因分型,通过测序,Soysnp6k Beadchip和来自已知蛋白质QTL染色体区域的选择的简单序列重复(SSR)标记来映射。在2号染色体上鉴定出一个QTL,该QTL解释了种子蛋白含量的56.8%的56.8%,种子油含量最高可达43%。15染色体上鉴定出的另一个QTL解释了种子蛋白质变异的27.2%和种子油含量变化的41%。这项研究的蛋白质和油QTL及其相关分子标记物将在繁殖中有用,以改善大豆的营养质量。
摘要 本研究探讨了利用全基因组关联研究(GWAS)策略加速作物抗性性状改良的现状和未来前景。随着高通量测序技术和生物信息学的快速发展,GWAS已成为将DNA变异与重要作物性状联系起来的有力工具。本研究特别强调了整合多组学数据的策略,以及基于GWAS结果的精准育种和基因编辑技术的应用,为作物抗性性状的改良提供了新的方向和策略。此外,转录组关联研究(TWAS)等方法的出现为识别与复杂性状相关的基因提供了强有力的工具,表明未来人们对基因组调控和遗传调控基因的理解将更加全面。这些进展不仅推动了作物遗传改良的科学研究,也为作物生产和食品安全的可持续发展提供了坚实的科学基础。 关键词 全基因组关联研究(GWAS);高通量测序技术;生物信息学;作物抗性性状;转录组关联研究(TWAS)
遗传研究已经确定了与2型糖尿病风险相关的≥240个基因座(T2D),但这些基因座大多数位于非编码区域,掩盖了基本的分子机制。最近研究人类胰岛中mRNA表达的研究已经对正常胰岛功能和T2D病理生理学的分子驱动因素产生了重要的见解。但是,研究microRNA(miRNA)表达的类似研究仍然有限。在这里,我们提供了来自63个个体的数据,这是迄今为止人类胰岛中miRNA表达的最大测序分析。我们通过将高度可遗传的miRNA的表达分解为顺式和转移的遗传成分,并映射与miRNA表达相关的顺式基因座[miRNA表达定量性状特质基因座(EQTLS)]。我们发现I)84可遗传的miRNA,主要由反式遗传效应调节,ii)5 miRNA -EQTL。我们还使用了几种不同的策略来识别与T2D相关的miRNA。首先,我们将miRNA-EQTL与与T2D和多个血糖性状相关的遗传基因座共定位,鉴定了一种miRNA miRNA,miRNA,MiRNA,该miRNA共享血糖和糖化血糖的遗传信号(HBA1C)。接下来,我们将miRNA种子区域和与T2D和血糖性状相关的可靠的SNP相交,并发现了32个miRNA,这些miRNA可能因种子区域而破坏的结合和功能可能改变。最后,我们进行了差异表达分析,并确定了与T2D状态相关的14个miRNA,包括miR-187-3p,miR-21-5p,miR-668和miR-199b-5p,以及与HbA1C水平的多基因分数相关的4个miRNA,MIR-216A,mir-25,mir-25,mir-25,mir-30a-30a-3p和mir-3p和mir-3p和mir-3p。