摘要 - 监控运动员运动对于提高性能,减轻疲劳并减少受伤的可能性很重要。高级技术,包括计算机视觉和惯性传感器,在对运动特定运动进行分类方面已广泛探索。将自动体育行动标签与运动员监控数据相结合提供了一种有效的方法来增强工作量分析。关于对运动特定运动进行分类的最新研究表明,基于个别运动员的训练和评估方法的趋势,使模型可以捕获每个运动员特有的独特功能。这对于运动员之间技术差异很大的运动特别有益。当前的研究使用受监督的机器学习模型,包括神经网络和支持向量机(SVM),以使用从上下背包惯性测量单元(IMU)传感器中提取的功能来区分跑步表面,即田径轨道,硬砂和软砂。主成分分析(PCA)用于特征选择和降低维度,增强模型效率和解释性。我们的结果表明,与运动员无关的方法相比,运动员依赖的训练方法可大大提高分类性能,从而达到更高的加权平均精度,召回,F1得分和准确性(p <0.05)。
交付惯性是真正需要的是真正的惯性。8月9日的真实故事是,由于化石加油站退休,该系统的惯性通常少于该网格以来的惯性。那天,惯性很低,因为风产生很高。如果有足够的惯性,只会发生一次或两次旅行,而不是许多人的级联。Storectric的CAES解决方案提供了同等大小的电站的两倍的自然惯性,并提供24/7。关于Storelectric-Storeclectric(www.storelectric.com)正在开发传输和分配网格尺度存储,以使可再生能源能够可靠,成本效率地为电网提供动力:世界上最具成本效益,最广泛可用的大规模储能技术,转向本地生成的可再生能源,使得可造成的电力易于实现。
美国所有主要终端使用领域的能源消费均稳步增长,其中电力和天然气增长最快。2017 年全球电力需求增长了 3.1%,其中中国和印度占增长的 70%。自 1950 年以来,美国的发电量增长了 13 倍,2018 年创下了 4% 的增长记录。尽管受新冠疫情影响导致能源需求减少(2019 年至 2020 年下降约 6%),但能源部门脱碳以及实现主权和不受天气影响的能源上网的需求从未如此迫切。惯性聚变能 (IFE) 提供了一种无碳能源的前景,其燃料供应几乎无限。与核裂变不同,聚变发电厂不会产生大量需要长期处置的高放射性核废料。劳伦斯利弗莫尔国家实验室的国家点火装置 (NIF) 最近取得突破,实现了 1.35 MJ 的聚变产量,超过点火所需增益的 70%,表明等离子体燃烧强劲。它将 ICF 和 DT 物理平台推向了聚变点火的门槛。美国的三项主要研究工作围绕驱动内爆和实现所需的高能量密度等离子体条件的三大能源展开:
动力学模型及其参数的辨识是机器人技术和系统动力学建模领域的基本问题之一。对于物体具有六个自由度 (6-DOF) 的一般情况,例如无人机 (UAV) 的情况,关键物理参数是飞行器质量和转动惯量。尽管无人机质量及其几何/拓扑结构很容易获得,但考虑到惯性张量无法通过静态试验测量,因此很难辨识。本文介绍了一种基于双线摆和机载集成传感器系统的简单有效的刚体惯性在线估计方法。其中,测试对象(即无人机)由两根细平行线悬挂,形成绕垂直轴的双线扭摆。使用无人机飞行控制器 (FC) 单元的机载传感器记录和处理摆锤振动,以获得用于最终惯性估计阶段的无趋势和无噪声信号。针对与无人机控制箱和完整无人机配置相关的两个典型悬浮物体案例,通过实验验证了所提出的识别算法。
本出版物旨在报告惯性子网络的边界、每个惯性子网络的惯性要求以及 AEMO 对未来五年全国电力市场任何已确定的惯性短缺的评估。AEMO 根据《国家电力规则》第 5.20.5 条发布 2022 年惯性报告。本出版物通常基于 AEMO 截至 2022 年 11 月可获得的信息,除非
1 CAS量子信息信息实验室,中国科学技术大学,Hefei 230026,中华人民共和国2 CAS量子信息与量子物理学卓越卓越中心,中国科学技术大学,230026,Hefei 230026,中国人民共和国3,化学研究所3,耶路撒冷大学,耶路撒大学,耶路撒大学。加利福尼亚大学的物理学,圣塔芭芭拉,加利福尼亚州93106,美利坚合众国5菲西卡学院gal。Milton Tavares de Souza s/n,Gragoatá,24210-346 Niter´Oi,Rio de Janeiro,巴西,巴西6 DepratimentodeFísica,联邦联邦政府De s〜ao Carlos,Rodovia WashingtonLuís,spsp-sp-35-sp-sp-310,135565-955-9565-95-95-95-95-95-95-95-95-95-95-95-95-95-95-95-905-905-905-905 SO.任何信件应被解决。7这些作者对这项工作也同样贡献。
首字母缩略词和缩写列表 AC 交流电 DC 直流电 DOE 美国能源部 EI 东部互联 ERCOT 德克萨斯州电力可靠性委员会 FERC 联邦能源管理委员会 FFR 快速频率响应 GW 千兆瓦 GWh 千兆瓦时 GW•s 千兆瓦秒 IBR 基于逆变器的资源 kW 千瓦 kWh 千瓦时 LR 负载响应 MISO 中大陆独立系统运营商 mph 英里每小时 MW 兆瓦 MWh 兆瓦时 MW•s 兆瓦秒 NERC 北美电力可靠性公司 NREL 国家可再生能源实验室 PFR 主频率响应 RPS 每秒旋转数 PV 光伏 RoCoF 频率变化率 RRS 响应备用服务 UFLS 低频负载削减 VG 可变发电 WI 西部互联
经过 30 多年的国际气候政策,全球能源相关的二氧化碳排放量持续增加。实际排放量与实现气候稳定目标(如 1.5°C 巴黎目标)的排放轨迹之间的差距正在扩大。自 1992 年《联合国气候变化框架公约》以来,欧洲的排放量减少了 30% 以上,但这一减少主要是由于东欧能源密集型经济体的崩溃以及西欧国家在资本周期结束时关闭过时的燃煤工业资产。绿色协议于 2019 年启动,但在 2014 年至 2018 年期间,欧盟与能源相关的二氧化碳总排放量减少了惊人的 1.1%……尽管在绿色协议之前的几年里,欧洲的排放量接近稳定,但 2019 年之后没有出台任何新的政策方案或手段来实现极具挑战性的脱碳目标。强化现有政策似乎就足够了。
这款多功能战术导航系统利用实时移动地图技术,持续为驾驶员和机组人员提供准确的态势感知信息。CheetahNAV 具有用户友好的图形导航功能,结合惯性和卫星位置信息,可在预设航点之间准确导航至目的地。CheetahNAV 使用先进的惯性导航系统 (INS),该系统由加速度计和陀螺仪等多种辅助设备组成,使用先进的卡尔曼滤波器算法提供平台的准确位置、速度、航向、俯仰和横滚。
INS - 工作原理 INS 平台上的加速度计测量车辆在南北和东西平面的加速度。加速度信息随后在计算机中被积分两次,并与定时信号进行比较,以产生两个通道(南北和东西)的距离。平台通过陀螺仪稳定的万向系统和平台控制单元保持水平并与真北对齐。飞机轴和 INS 平台轴的相对位置提供有关飞机俯仰、滚转和航向的信息。