Strategic Report 02 Our business at a glance 04 Chair's statement 06 Chief executive's statement 08 Our business model 09 Our value chain 10 Our strategy 11 Our approach to sustainability and innovation 12 Creating value for our stakeholders 14 How we make decisions 16 Understanding our stakeholders 20 Our material matters 24 Reflecting stakeholder views in our Board decision making 26 Operational excellence 36 Portfolio simplification 50 Growth 58 Strategic enablers 92 Capital allocation 95 Managing风险有效104个关键绩效指标108集团财务评论112铜118铁矿123铂集团金属(PGMS)128 DE BEERS 133制造煤炭133钢煤137镍140锰142农作物营养145企业和其他146个非财务和可持续性信息披露和富于
尽管最近大语言模型(LLM)的扩散,但他们的培训配方 - 模型架构,培训数据和优化算法 - 通常非常相似。这自然提出了所得模型之间相似性的问题。在此过程中,我们提出了一个新颖的设置,虚构的问题回答(IQA),以更好地理解模型相似性。在IQA中,我们要求一个模型生成纯粹的虚构问题(例如,在物理学中的完全构成概念上),并促使另一个模型回答。令人惊讶的是,尽管这些问题完全是虚构的,但所有模型都可以以显着的一致性来回答彼此的问题,这表明了这些模型在此类幻觉中运行的“共同想象空间”。我们对这种现象进行了一系列研究,并讨论了这种模型均匀性对幻觉检测和计算创造力的含义。我们将在公共网站上发布并维护代码和数据。
摘要 —基于运动想象的脑机接口 (MI-BCI) 允许用户仅使用大脑活动来控制计算机以执行各种应用,而大脑活动通常由脑电图 (EEG) 记录。尽管 BCI 应用众多,但由于其准确性较差,它们在实验室外的使用仍然很少。一些用户无法使用 BCI,这种现象有时被称为“BCI 文盲”,影响了大约 10% 到 30% 的 BCI 用户,他们无法产生可辨别的 EEG 模式。通过进行神经生理学分析,尤其是通过识别 BCI 性能的神经生理学预测因子,我们可以更好地理解这种现象及其原因。反过来,这也可能帮助我们更好地理解并从而可能改进 BCI 用户培训。因此,本文提出了专用于预测 MI-BCI 用户表现的统计模型,该模型基于从“睁眼放松”条件下的两分钟 EEG 记录中提取的神经生理学用户特征。我们考虑了 56 名受试者在进行 MI-BCI 实验之前在“睁眼放松”条件下记录的数据。我们使用机器学习回归算法和留一交叉验证来构建我们的预测模型。我们还计算了这些特征(神经生理预测因子)与用户的 MI-BCI 表现之间的不同相关性。我们的结果表明,此类模型可以比偶然性(p ≤ 0.01)更好地预测用户表现,但平均绝对误差相对较高,为 12.43%。我们还发现我们的一些特征与性能之间存在显着的相关性,包括之前探索的 µµµ 波段预测因子,以及这里提出的新预测因子:µµµ 峰值位置变异性。因此,这些结果有助于更好地理解和预测 BCI 文盲。但是,它们还需要进一步改进才能获得更可靠的预测。索引词 — 脑机接口 (BCI)、脑电图 (EEG)、神经生理预测指标
简介:提出了各种用户训练来帮助用户完成运动想象(MI)BCI 任务,例如,使用正(有偏见)反馈(它是对一个人标记的大脑活动的乐观表示)已被证明可以提高表现[1]或学习[2]。相反,在[3]中,正反馈减少,而负反馈增加用户在一次会话中的学习。为了更好地理解有偏见的反馈对BCI训练期间的表现和学习的好处,我们考虑了用户状态,例如工作量和心流状态,一种最佳认知控制、沉浸和愉悦的状态,这些状态已被证明与表现相关[4]。材料、方法和结果:30名参与者(12名女性,平均年龄:28.56岁,SD:6.96)分为3组:1.无偏见,2.正偏见和3.负偏见,其中SVM分类器输出使用累积beta分布函数实时偏置。参与者参加了 2 个环节,每个环节包括校准(2 次运行)和测试(6 次运行)。一次运行包含每个类 20 次试验,持续约 5 分钟。用户使用左右手 MI 玩 Tux Racer 游戏。每次运行后,分别使用 NASA-TLX [5] 和 EduFlow [6] 问卷评估工作量和流动状态。在线表现被计算为分类器的峰值表现。学习率是环节内在线表现与运行的线性回归的斜率,例如高于零表示积极学习,而低于零表示学习下降。我们发现学习率在组×环节之间存在显着的相互作用(双向方差分析,p <0.01),图 1.A;但组间表现没有差异。我们发现流动状态与表现(Pearson's r = 0.30)和学习率(r = - 0.20)之间存在相关性(p <0.05,用 FDR 校正);工作量与绩效之间没有相关性,但与学习率有相关性(r=0.13)。最后,我们发现各组之间存在显著差异,EduFlow 分数的认知控制维度 p<0.05,如 [4] 图 1.B 所示。
在论文的第一部分中,从食物废物中提取壳聚糖是使用绿色溶剂作为循环经济的可持续解决方案进行的。此外,通过使用Core-Shell Zno@Sno X颗粒开发纳米复合材料来增强壳聚糖的抗菌活性,这在食品包装应用中具有显着潜力。为了获得更大的抗菌功效和紫外线阻滞能力,壳聚糖被化学接枝,苯甲酮3(BP-3)是一种以其紫外线过滤特性而闻名的植物提取物。针对革兰氏阴性菌和革兰氏阳性细菌评估了所获得的壳聚糖BP-3涂层的抗菌活性,并且发现苯甲酮3上的羟基在苯甲酮3上在抗相菌效率中起着至关重要的作用。连续的辐射测试表明,涂层具有长期的紫外线阻滞作用。
传统康复技术存在局限性,大多数患者在卒中后 1 年恢复情况不佳。因此,神经反馈 (NF) 或脑机接口在卒中康复中的应用越来越受到关注。事实上,NF 有可能增强对目标皮质区域的意志控制,从而影响运动功能恢复。然而,目前的实施受到所用特定成像方式的时间、空间或实际约束的限制。在这项试点工作中,也是在文献中首次,我们应用双模 EEG-fMRI NF 对四名具有不同卒中特征和运动障碍严重程度的卒中患者进行上肢卒中恢复。我们还提出了一种新颖的多目标训练方法,引导训练激活同侧初级运动皮质。除了 fMRI 和 EEG 结果外,我们还使用纤维束成像评估皮质脊髓束 (CST) 的完整性。初步结果表明我们的方法可行,并显示出其有可能根据中风缺陷的严重程度诱导同侧运动区域的增强激活。只有两名 CST 和皮质下病变保留的患者成功上调了同侧初级运动皮质,并表现出上肢运动功能改善。这些发现强调了考虑中风患者群体差异的重要性,并使我们能够确定未来临床研究设计的纳入标准。
使用脑部计算机界面从神经活动中重建预期的语音对有严重言语生产的人的巨大承诺具有巨大的承诺。在解码公开的语音进展中,解码的想象语音取得了有限的成功,这主要是因为相关的神经信号与公开的语音相比较弱且可变,因此很难通过学习算法来解释。我们从13名患者那里获得了三个电视学数据集,植入了癫痫评估的电极,他们执行了公开并获得的语音生产任务。基于最新的语音神经处理理论,我们提取了可用于未来大脑计算机界面的一致和特定的神经特征,并评估了它们的性能,以在表达,语音和人声表示空间中区分语音项目。高频活动为公开语音提供了最佳信号,但低频和高频功率和局部跨频都导致了想象的语音解码,尤其是语音和人声,即知觉,空格。这些发现表明,低频功率和跨频动力学包含用于想象的语音解码的关键信息。
Serena Ricci – Community Liaison Officer, Reimagine Education Awards Anton John Crace – Editor & Program Designer, QS Quacquarelli Symonds Jack Moran – PR Manager (EMEA), Coursera Leila Guerra – Vice-Dean (Education), Imperial College Business School Levent Yarar – Senior Director of Strategic Partnerships, Wharton Interactive Nic Newman – Partner, Emerge Education Monica Hornung Cattan - QS Quacquarelli Symonds Sarah Toms - 首席学习官IMD Zoya Zoya Zaitseva - 创新经理,QS Quacquarelli Symonds
使用AI(从Genai到代理AI)自动化任务并创造效率。尽管大多数政府系统都旨在自动化核心业务流程,但传统技术和复杂的代理任务仍需要大量的手动努力。更广泛地使用基于AI的系统可以通过假设繁重的,重复的,低级的任务来帮助优化资源,以便政府员工可以专注于解释数据,批判性思维和服务提供。将AI部署用于适当的任务也可以节省无数小时。Deloitte研究估计,智能技术从起草新技术的起草报告到路由文档到适当的专家进行审查的任务节省了75%至95%。4
大脑活动由振荡和宽带心律失常成分组成;然而,在运动研究中,人们更多地关注振荡感觉运动节律,而宽带心律失常脑电图 (EEG) 的时间动态仍未被探索。我们之前已经证明,宽带心律失常脑电图包含短距离和长距离时间相关性,这些相关性在运动过程中会发生显著变化。在本研究中,我们以之前的工作为基础,更深入地了解宽带脑电图中长距离时间相关性 (LRTC) 的这些变化,并将它们与文献中常见的众所周知的 alpha 振荡幅度 LRTC 进行对比。我们使用两个独立的 EEG 数据集(这两个数据集以两种不同的范式记录)来调查和验证五种不同类型的运动和运动想象任务期间 LRTC 的变化——我们的手指敲击数据集(包含单次自我发起的异步手指敲击)和公开可用的 EEG 数据集(包含提示的拳头和脚的连续运动和运动想象)。我们通过对单次试验 2 秒 EEG 滑动窗口进行去趋势波动分析,量化了宽带 LRTC 的瞬时变化。与静息状态相比,宽带 LRTC 在所有运动任务中均显著增加(p < 0.05)。相反,必须在较长的拼接 EEG 段上计算的 alpha 振荡 LRTC 显著下降(p < 0.05),与文献一致。这表明在运动和运动想象过程中,潜在的快速和慢速神经元无标度动力学是互补的。单次试验宽带 LRTC 在所有运动执行和想象任务中均具有较高的平均二元分类准确率,范围为 70.54 ± 10.03 % 至 76.07 ± 6.40 %,因此可用于脑机接口 (BCI)。因此,我们证明了新型运动神经相关性单次试验宽带 LRTC 在单个异步和提示连续运动-BCI 范式中的不同运动执行和想象任务中的普遍性、稳健性和可重复性,以及它与 LRTC 在 alpha 振荡幅度方面的对比行为。
