简介:提出了各种用户训练来帮助用户完成运动想象(MI)BCI 任务,例如,使用正(有偏见)反馈(它是对一个人标记的大脑活动的乐观表示)已被证明可以提高表现[1]或学习[2]。相反,在[3]中,正反馈减少,而负反馈增加用户在一次会话中的学习。为了更好地理解有偏见的反馈对BCI训练期间的表现和学习的好处,我们考虑了用户状态,例如工作量和心流状态,一种最佳认知控制、沉浸和愉悦的状态,这些状态已被证明与表现相关[4]。材料、方法和结果:30名参与者(12名女性,平均年龄:28.56岁,SD:6.96)分为3组:1.无偏见,2.正偏见和3.负偏见,其中SVM分类器输出使用累积beta分布函数实时偏置。参与者参加了 2 个环节,每个环节包括校准(2 次运行)和测试(6 次运行)。一次运行包含每个类 20 次试验,持续约 5 分钟。用户使用左右手 MI 玩 Tux Racer 游戏。每次运行后,分别使用 NASA-TLX [5] 和 EduFlow [6] 问卷评估工作量和流动状态。在线表现被计算为分类器的峰值表现。学习率是环节内在线表现与运行的线性回归的斜率,例如高于零表示积极学习,而低于零表示学习下降。我们发现学习率在组×环节之间存在显着的相互作用(双向方差分析,p <0.01),图 1.A;但组间表现没有差异。我们发现流动状态与表现(Pearson's r = 0.30)和学习率(r = - 0.20)之间存在相关性(p <0.05,用 FDR 校正);工作量与绩效之间没有相关性,但与学习率有相关性(r=0.13)。最后,我们发现各组之间存在显著差异,EduFlow 分数的认知控制维度 p<0.05,如 [4] 图 1.B 所示。
主要关键词