在严重中风的幸存者中,皮质肌肉控制受到干扰,经常无法自主地进行上肢运动。在心理上排练受损运动并结合感觉反馈被认为是一种有前途的康复练习。然而,对于潜在的神经过程的了解仍然很模糊。在患有手部麻痹的男性和女性慢性中风患者中,脑机接口控制机器人矫形器,将手指伸展运动想象 (MI) 期间的感觉运动 b 波段去同步化转变为偶然的手部张开。健康对照受试者使用机器人矫形器或仅使用视觉反馈执行相同任务并接收相同的本体感受反馈。只有当提供本体感受反馈时,皮质肌肉一致性 (CMC) 才会增加,主要信息流从感觉运动皮质流向手指伸肌。这种效应 (1) 特定于 b 频带,(2) 转移到运动任务 (MT),(3) 与随后的皮质脊髓兴奋性 (CSE) 成正比,并与 (4) 健康和 (5) 中风后条件下的行为变化相关;值得注意的是,MI 相关的同侧运动前皮质 b 波段 CMC 增强与干预后的运动改善相关。在健康和受伤的人类神经系统中,根据通过一致性通信的假说,与运动相关的皮质和脊髓神经池的同步激活促进了皮质-脊髓通信,因此,当自主运动不再可能时,可能对中风后的功能恢复具有治疗意义。
Arrestin 介导的脱敏使秀丽隐杆线虫的神经元内嗅觉辨别成为可能......................................................................................................................................44
摘要 本文描述了 27 名 12 至 18 岁的寄养儿童在弗兰德长期接受家庭寄养,他们在寄养家庭中的生活体验以及他们如何应对自己的感受。通过儿童选择的不同情绪(表情符号)的视觉图像和半结构化访谈的结合,可以发现他们大多表达积极情绪,如快乐和自豪,但同时也会经历悲伤、愤怒和困惑等困难情绪。积极情绪主要与能够感觉自己是一个“普通”孩子有关,而消极情绪则与与亲生父母的紧张关系有关。对儿童如何应对这些情绪的调查区分了两类:一类人与朋友和其他支持者谈论自己的感受,另一类人则隐藏自己的感受。需要为后者提供策略,以更好地理解和表达他们的感受;建议的策略包括提供安宁、安慰或分散注意力的活动,以及拥有自己的私人空间。更多地关注寄养儿童的情感体验
脑机接口 (BCI) 可以设计为具有多种反馈模式。为了在治疗应用中促进适当的大脑可塑性,反馈应引导用户引发所需的大脑活动,并且最好与想象的动作相似。在本研究中,我们采用脑磁图 (MEG) 测量健康受试者的神经生理变化,这些受试者使用两种不同的反馈模式进行基于运动想象 (MI) 的 BCI 训练。本研究中使用的 MI-BCI 任务持续 40-60 分钟,涉及右手或左手运动的想象。8 名受试者通过视觉反馈执行任务,14 名受试者通过本体感受反馈执行任务。我们使用广义线性模型分析了整个会话中 4-40 Hz 范围内多个频率的功率变化,以找出训练期间功率显著增加的频率。此外,还分别分析了每个梯度计的 alpha(8-13 Hz)、beta(14-30 Hz)和 gamma(30-40 Hz)波段的功率增加,以找到在整个会话期间表现出显着线性功率增加的通道。这些分析应用于三种不同的条件:休息、准备和 MI。在所有条件下,视觉反馈都增强了枕叶和左颞叶通道中主要高 beta 和 gamma 波段(24-40 Hz)的振幅。相反,在本体感受反馈期间,功率主要增加在 alpha 和 beta 波段。在所有条件下,在多个顶叶、枕叶和颞叶通道中都发现了 alpha 波段增强,而 beta 波段增加主要发生在休息和准备期间的顶叶枕叶区域,在 MI 期间发生在手部运动区域上方的顶叶通道。我们的结果表明,使用本体感受反馈的 BCI 训练会增加运动皮层中感觉运动节律的功率,而视觉反馈主要导致视觉皮层中 gamma 波段的增加。 MI-BCI 应该涉及本体感受反馈以促进运动皮层的可塑性。
使用地形自动编码器预测本体感受皮层解剖结构和神经编码 Kyle P. Blum 1*、Max Grogan 2*、Yufei Wu 2*、J. Alex Harston 2、Lee E. Miller 1 和 A. Aldo Faisal 2 * 对本文贡献相同 1 西北大学 2 伦敦帝国理工学院 本体感受是最不为人理解的感觉之一,但却是控制运动的基础。甚至肢体姿势在体感皮层中如何表现等基本问题也不清楚。我们开发了一种具有地形横向连接的变分自动编码器 (topo-VAE),从大量自然运动数据中计算假定的皮层图。尽管不适合神经数据,但我们的模型重现了猴子中心向外伸展的两组观察结果:1. 尽管模型不了解手臂运动学或手部坐标系,但本体感受场在以手为中心的坐标系中的形状和速度依赖性。 2. 从多电极阵列记录的神经元首选方向 (PD) 分布。该模型做出了几个可测试的预测:1. 跨皮层的编码具有斑点和风车类型的几何 PD。2. 很少有神经元会只编码单个关节。Topo-VAE 为理解感觉运动表征提供了原则基础,以及神经流形的理论基础,并应用于脑机接口中感觉反馈的恢复和人形机器人的控制。关键词:本体感觉、皮层地图、地形测绘、深度学习、自然感觉统计、感觉生态学、变分自动编码器、计算神经科学、运动运动学、神经活动、初级体感皮层、自然行为、神经力学简介体感包括由皮肤受体提供的熟悉的触觉和本体感觉,本体感觉是一种不太有意识的感觉,它可以告诉我们动作姿势、运动以及作用于四肢的相关力量。前者受到了科学界的广泛关注,而本体感觉则经常被忽视,然而这种感觉反馈方式对于我们规划、控制和调整运动的能力至关重要。在工程学中,如果控制器不知道执行器的位置,就不可能控制机器人的运动;相应地,在人体运动控制(本体感觉)中,反馈控制理论是肢体控制计算的卓越解释(Todorov 和 Jordan 2002;Scott 2004)。此外,患有本体感觉神经功能障碍的个体,例如 IW 患者,即使在有视力和完整的运动系统的情况下,也存在严重的运动障碍 (Tuthill 和 Azim 2018;Sainburg、Poizner 和 Ghez 1993)。同样,神经假体领域的最新重大进展是
科学界。[1-7]无论如何,每次活着都会揭示出新颖的适应性和动态反应性的模仿行为,它都会激发并促进未来派和不受欢迎的技术成果。[8-12]在生物学水平上,视觉crypsis是物种通过与栖息地的颜色和几何图案相匹配而与周围环境相似的能力。从这个意义上讲,生物可以通过色素沉着或散发性元素在介观尺度上的布置和优化结构进行光学控制(这可以在体内表现出身体上的皱纹和质地以逃避检测或观察)。[13–18]这两种机制的特征在于时间响应,范围从毫秒到数百秒。在自然界中,几个物种都利用了隐性能力,例如,在头足类动物中,[7] crustaceans,[19]爬行动物,[1,20,21]昆虫,[22,23]鸟类,[24,25]贝壳,[26,27]植物,[26,27]植物,[28,29]。生物色彩变化和身体模式与生殖,交流,防御和/或掠夺性策略有关。不幸的是,在动物和植物中引导这些行为的神经或中央控制链系统仍然以某种方式引起了科学家的雾。[7,30–32]关于其中央信息过程系统的完整知识,可以对许多科学分支的惊人开发,从神经生物学[33,34]到量子生物学。更重要的是,章鱼是一种杰出的智能物种,例如,可以按照部分的顺序打开罐子或避免掠食者。[35]毫无疑问,自然世界中最讨论的研究案例是头足类动物,不仅可以高度进化和专门从事快速自适应色彩更改的显示器,而且还可以在暴露于特定的机械,热,光学,光学或化学刺激的情况下会使他们的皮肤生成3D模式。软肌肉排列,[36–38]空间分布和可扩展的吸收成分(即染色体),[39,40]虹彩元素(即虹膜phores)[41,42],[41,42]和亮白色散射剂(即亮白色散射器(即负责)[43] [43]是负责的。[44]因此,由于其身体的力学和形态之间的共生以及分离的感觉神经运动控制系统,头足类通常被视为体现智力的完美例子[45]。他们的“学习”,“机械”和“物质智力”将是我们的评论,从而使我们的lodestars成为
什么是疼痛? 尽管我们用“疼痛”一个词来描述包括酸痛、不适和不快等一系列不愉快的感觉,但疼痛本身很复杂,可能由多种截然不同的情况引起。认识到这一点很重要,因为每种疼痛情况都可能需要不同的治疗干预(1、2)。疼痛有一些方面确实是生理性的,例如,我们能够察觉到潜在的破坏性外部刺激:极热或极冷、过度的机械力和化学刺激物。这构成了伤害性疼痛,它是由高阈值伤害性感受器感觉神经元的激活驱动的,这些神经元适合于将这些有害刺激转化为进入中枢神经系统(CNS)的感觉输入。伤害性感受器通过激活伤害性回路引起的急性疼痛有助于我们学会避开环境危险(3-6)。疼痛具有高度适应性,在我们与外界的日常互动中,它对于防止损伤至关重要。缺乏这种损伤预警系统的人,比如因电压门控钠通道 1.7 (Nav 1.7) 或原肌球蛋白受体激酶 A (TRKA) 受体功能丧失突变而先天性对疼痛不敏感的人,通常会在进食时损伤舌头和嘴唇,在走路时损伤脚趾,在探索物体时损伤手指,并且在骨折或患阑尾炎时没有任何警示,从而缩短寿命 (7,8)。因此,保留伤害性疼痛至关重要,除了手术期间或之后或重大创伤后立即发生。另一种适应性疼痛是组织损伤或由于病原体侵入或病理性炎症引起炎症时发生的炎症疼痛。随之而来的免疫系统激活导致产生炎症介质,这些介质作用于痛觉感受器,既直接激活(9-11),又使其敏感(12、13)。因此,它们的激活阈值下降,因此低强度刺激(如轻触或关节运动)现在会激活敏感的痛觉感受器,无害刺激会变成疼痛。这种疼痛,至少在急性情况下,是
4.1 目标 1:区分会话内内感受神经模式与……外部感受注意 ................................................................................................................................................................................................................................ 41 4.2 A IM 2:区分跨会话内感受注意和外部感受注意的神经模式 ...................................................................................................................................................................................... 43 4.3 A IM 3(探索性):在持续内感受注意过程中解码内感受注意任务 ............................................................................................................................................................................................. 43 4.4 A IM 4(探索性):利用从 F MRI 数据解码的内感受参与度预测主观内感受意识和幸福感................................................................................................... 44 4.5 研究结果摘要 ...................................................................................................................................................... 45 4.5 局限性 ...................................................................................................................................................................... 45 4.6 未来方向 ................................................................................................................................................................ 46 4.7 含义和结论 ...................................................................................................................................................... 47
Xtend 即将根据五角大楼合同交付 Skylord Xtender sUAS 2021-05-25 16:54:19.401 GMT (Janes) 根据最近的一份合同,Xtend 将很快开始向五角大楼交付其 Skylord Xtender 小型无人机系统 (sUAS)。 2021 年第三季度,该公司将向五角大楼战术单位交付数十套 Xtender 战术 sUAS 平台原型系统进行作战测试 要点 根据最近的一份合同,Xtend 将很快向五角大楼交付其 Skylord Xtender sUAS 的原型 Xtender 是一种专为近距离作战和城市战而打造的室内 ISR 解决方案 根据最近的一份合同,Xtend 将很快开始向五角大楼交付其 Skylord Xtender 小型无人机系统 (sUAS)。 2021 年第三季度,该公司将向五角大楼战术部队交付数十套 Xtender 战术 sUAS 平台原型系统,用于作战测试和评估 (OT&E)。该合同于 2021 年初颁发,由国防部负责特种作战/低强度冲突 (SO/LIC) 的助理部长、不规则战争技术支持局 (IWTSD) 颁发。Xtend 发言人于 5 月 24 日表示,该公司参与了该合同的竞标,但他没有提供更多细节。Xtend 业务开发和销售副总裁 Ido Bar-On 于 4 月 20 日告诉 Janes,Xtender 是一种室内情报、监视和侦察 (ISR) 解决方案,专为近距离战斗和城市战争而设计。Xtender 提供了一种独特的以人为本的机器界面技术,使操作员能够从安全距离远程干预危险情况。Xtender 操作员佩戴虚拟现实 (VR) 护目镜来查看飞机的视频源。 Bar-On 表示,这让操作员能够感受到飞机的一部分。操作员有一个手动控制器来指挥飞机,Bar-On 表示,这与任天堂 Wii 视频游戏系统使用的控制器类似。Xtender 在 2 月 5 日至 3 月 5 日于佐治亚州本宁堡举行的 2021 年美国陆军远征勇士实验 (AEWE) 上进行了演示。
慢性疼痛治疗仍然是一个痛苦的挑战,在我们老龄化的社会中,报告疼痛缓解不足的患者数量继续增长。当前的治疗方案都有其缺点,包括有限的效力以及虐待和成瘾的倾向;正在进行的阿片类药物危机举例说明了后者。在过去的几十年中,广泛的研究一直在慢性疼痛状态下的机制上,从而为新颖,有效且安全的药物介入带来了特殊的机会。瞬态受体电势(TRP)离子通道家族的成员代表了针对根部疼痛感觉的创新靶标。三个TRP通道TRPV1,TRPM3和TRPA1特别关注,因为它们被确定为伤害感受器神经元的化学和热诱导疼痛的传感器。本综述总结了有关基于TRP通道的疼痛疗法的知识,包括TRPV1拮抗剂临床发育的颠簸道路,TRPA1拮抗剂的当前状态以及靶向TRPM3的未来潜力。
