面部表达识别(FER)在计算机视觉应用中起着关键作用,包括视频不存在和人类计算机的相互作用。尽管FER的进展没有局部进步,但在处理在现实世界情景和数据集中遇到的低分辨率面部图像时,性能仍然会摇摆不定。一致性约束技术引起了人们的关注,以产生强大的卷积神经网络模型,从而通过增强来适应变化,但它们的功效在低分辨率FER的领域中得到了影响。这种性能下降可以归因于网络难以提取表达特征的增强样本。在本文中,我们确定了在考虑各种程度的分辨率时引起过度拟合问题的硬样品,并提出了新颖的硬样品感知一致性(HSAC)损失函数,其中包括组合注意力同意和标签分布学习。通过结合高分辨率和翻转低分辨率图像的激活图,将注意力图与适当的目标注意图与适当的目标注意图与适当的目标注意力图相结合的注意图与适当的目标注意力图的注意力图对齐。我们通过结合原始目标和高分辨率输入的预测来测量低分辨率面部图像的分类难度,并适应标签分布学习。我们的HSAC通过有效管理硬样品来赋予网络能够实现概括。各种FER数据集上的广泛实验证明了我们提出的方法比现有方法的多尺度低分辨率图像的优越性。此外,我们在原始RAF-DB数据集中达到了90.97%的最新性能。
计算机视觉社区过去主要集中于视觉算法的开发,用于对象检测,跟踪和分类,并在白天和类似办公室的环境中使用可见的范围传感器。在过去的十年中,红外线(IR),深度,X射线和其他不可见名的成像传感器仅在医学和防御等特殊领域中使用。与传统的计算机视觉相比,在这些感觉领域的兴趣相对较低,部分原因是它们的高成本,低分辨率,图像质量差,缺乏广泛可用的数据集以及/或缺乏对频谱不可访问的部分的优势的考虑。随着传感器技术的迅速发展,传感器成本急剧下降,这些局限性正在克服。此外,对安全和可靠性是主要问题的自主系统的兴趣日益增强,强调了强大的感知系统的重要性。在此类关键系统中,在不同频谱中运行的传感器相互补充,以克服每个单独的传感器的局限性,以在各种照明和天气条件下提供强大而可靠的感知。
对自动驾驶汽车的抽象协作感知旨在克服个人感知的局限性。在多个代理之间共享信息,可以解决多个问题,例如遮挡,传感器范围限制和盲点。最大的挑战之一是在受到束缚绩效和沟通带宽之间找到正确的权衡。本文提出了一种新的合作感知管道,该管道基于Whate2Comm算法具有优化策略,以减少几种代理之间的传输数据量。这些策略涉及编码器部分中的数据减少模块,以有效地选择最重要的特征,并以V2X方式交换消息的新代表,该消息将考虑信息及其位置的向量而不是高维特征图。在两个模拟数据集(OPV2V和V2XSET)上评估我们的方法。数据集上的AP@50的准确性大约为7%,并且在V2XSET和OPV2V上分别降低了89.77%和92.19%。
科学素养(Montecalvo & Larkin,2018)。然而,普通民众支持国家太空计划,美国(Pew,2019)和中国(Hines,2022)等国家的研究表明就是如此。此外,研究发现,人们大大高估了公共部门在太空探索方面的支出(ESA,2018)。另一个重要方面是学生的参与意愿。研究表明,学生普遍对学习太空的可能性持积极态度(Bergstrom 等人,2016)。学生认为物理等太空学科对他们未来的职业生涯很有趣,也很有用(Reid & Skryabina,2002),空间科学应该在一个人的整体常识中占有更重要的地位(Ottavianelli & Good,2002)。尽管如此,太空探索也被认为是奢侈和不必要的。太空研究被认为很困难,只适合最优秀和最聪明的人(Bergstrom 等人,2016)。关于空间科学的另一个经常被提及的误解是该学科的狭隘观点。它主要与天文学、物理学或机械工程有关,而这一领域涉及更多学科,例如生物学、地质学、信息学、电信、医学、心理学、法律等。人们认为空间领域以男性为主,由智力超群的人占据,大多数人无法进入。这种看法可能会造成一种同质环境,只有特定类型的人才能代表这一领域。为了使空间更具包容性、可及性和社会相关性,有必要对这一主题进行进一步研究。在本文中,我们希望展示我们在大学生中进行的混合方法研究的结果。这项研究旨在确定人们对太空探索和参与太空的总体态度。我们还调查了性别差异。
我们介绍C ONTITION- WARE神经N ETWORK(CAN),这是一种将控制添加到图像生成模式中的新方法。与先前的条件控制方法并行,可以通过动态降低神经网络的重量来控制图像生成过程。这是通过引入条件感知的重量产生模式来实现的,该模块会根据输入条件为卷积/线性层生成条件重量。我们测试可以在Coco上的ImageNet和文本对图像生成上生成类别图像的生成。可以始终如一地为包括DIT和UVIT在内的扩散变压器模型提供显着改进。特别是,Ca n与有效的T(CAT)结合在Imagenet 512×512上达到2.78 FID,超过DIT-XL/2,同时每个采样步骤需要少52×MAC。
感知在各种机器人应用中起着至关重要的作用。但是,现有的良好的数据集偏向自动驾驶场景,而未标记的SLAM数据集则很快过于拟合,并且通常缺乏环境和域变化。为了扩大这些领域的边界,我们介绍了一个名为MCD(Multi-campus数据集)的全面数据集,其中包含各种感应方式,高准确的地面真相以及在三个欧亚大学的欧亚大学校园内的挑战性环境。MCD包括CCS(经典的圆柱旋转)和NRE(非重复性环球)LIDAR,高质量的IMU(惯性测量单元),相机和UWB(URWB(Ultra-Wideband))传感器。更重要的是,在开创性的努力中,我们引入了29堂课的语义注释,超过59k稀疏的nre lidar扫描
摘要:从表面上看,行为科学和物理学似乎是两个不同的研究领域。然而,对他们解决的问题进行了更仔细的研究表明,它们彼此唯一相关。以量子思维,认知和决策理论为例,这种独特的关系是本章的主题。调查当前的学术期刊论文和学术专着,我们提出了量子力学在人类感知,行为和决策现代研究中的作用的另一种愿景。为此,我们主要旨在回答“如何”问题,故意避免复杂的数学概念,但要开发一种技术简单的计算代码,读者可以修改以设计自己的量子启发的模型。我们还介绍了计算代码的应用并概述几个合理的方案的几个实践示例,其中量子模型基于提议的DO-Yourandself Model套件可以帮助了解个人和社会群体的行为之间的差异。
抑郁症是全球第三大致残原因,已成为影响所有年龄段人群的重大公共卫生问题,对身心健康产生深远的负面影响。在美国,经历重度抑郁发作的一生中风险接近 30% (1,2)。在此背景下,抑郁家庭环境中的经历在塑造后代对抑郁和焦虑症的脆弱性和适应力方面起着至关重要的作用 (3)。因此,研究越来越多地关注家庭动态和抑郁症之间的复杂相互作用,特别强调照顾者的情绪健康对儿童心理发展的影响。照顾者的焦虑和压力被认为是可能引发或加剧抑郁症状的关键因素 (4),此外,父母的抑郁和焦虑有可能跨代传递 (5)。例如,Carly J. Johnco 和同事发现了焦虑和抑郁代际传递的证据,并指出父母的排斥和缺乏温暖会显著增加儿童患抑郁症的风险(6)。照顾者的焦虑和压力等心理健康问题会对家庭环境产生不利影响,从而可能增加后代患抑郁症的风险。有多种机制可以阐明照顾者的压力如何影响儿童:1.家庭环境对神经发育的影响:Nicole R. Bush 和同事发现,家庭社会经济地位、家庭结构和环境、养育行为和互动方式、父母的心理健康和功能以及父母的物质使用等因素都会影响儿童的大脑发育,进而影响他们患精神疾病的风险(7);2.情绪感染:儿童可能会内化照顾者的情绪状态,导致抑郁症状的出现。行为模仿:儿童可能会采用照料者模仿的适应不良的应对策略。例如,Emily L. Robertson 及其同事观察到,自 COVID-19 疫情爆发以来,照料者的焦虑、愤怒、悲伤/抑郁情绪增加,饮食和睡眠模式发生变化,对未来的希望减少,冲突加剧,这些因素可以预测一个月后其子女脾气问题、冲突和注意力缺陷多动障碍 (ADHD) 症状的严重程度 ( 8 )。3. 育儿实践受损:照料者的焦虑会破坏育儿行为,导致过度保护、管教不一致或忽视,进而导致儿童情绪失调和抑郁症状。由于照料者情感缺失导致亲子关系恶化,进一步增加了儿童患抑郁症的可能性 ( 9 )。4.社会经济和环境压力源:照料者的压力往往伴随着社会和经济压力,这些压力会通过限制儿童获得资源和机会而加剧上述影响(10、11)。尽管有大量的研究,但大多数研究都是在西方背景下进行的,主要关注父母情绪对儿童情绪健康的影响。关于照料者压力和焦虑影响的研究明显不足
如今,空气和噪音污染的持续增加已成为一种长期的滋扰,同时也是一个令人担忧的问题。在本期刊中,我们将提供一个系统来测量和监控环境参数,并在空气质量和噪音水平超过安全水平时发出警报。该系统使用必要的传感器来检测大气中的气体以及特定区域的噪音水平,并将其传输到微控制器 NodeMCU。现在,通过 Wi-Fi 凭证连接到 Node MCU 的云平台 Blynk 会获取数据并通过与被视为安全水平的值进行比较来处理数据。当每个空气质量和噪音污染变量超过允许水平时,这个基于云的监控应用程序 Blynk 还会提供一个警报系统。它通过向 Android 设备发送电子邮件或消息来通知用户,甚至可以激活蜂鸣器作为警报。这些数据被连续传输,并被存储以供进一步解释。这种基于云的污染监测系统是最经济、最可靠、最具成本效益的,并且可以增强以应对即将到来的挑战。2021 Elsevier Ltd. 保留所有权利。由第二届国际创新技术和科学会议 (iCITES 2020) 的科学委员会负责选择和同行评审。
机器人及时通过传感器数据构建持久,准确且可操作的模型的能力是自主操作的范围。在将世界表示为点云可能足以进行本地化时,避免障碍物需要更密集的场景表示形式。另一方面,更高级别的语义信息通常对于分解必要的步骤来完成一项复杂的任务,例如烹饪,自主是至关重要的。因此,迫在眉睫的问题是,手头机器人任务的合适场景表示是什么?这项调查提供了对关键方法和框架的全面回顾,这在机器人空间感知领域推动了进步,并特别关注了代表的历史演变和当前的趋势。通过将场景建模技术分类为三种主要类型(公式,公式和指标 - 语言流行),我们讨论了空间启示框架正在从构建世界的纯几何模型转变为更高级的数据结构的方式,这些模型包括更高级别的概念,例如对象实例和位置的概念。特别重点是实时同时定位和映射(SLAM)的方法,它们与深度学习的集成,以增强了鲁棒性和场景的理解,以及它们处理场景动态性的能力,作为当今驾驶Robotics研究的一些最热门的主题。我们在讨论方面的挑战和未来的研究方向的讨论中进行了结论,以建立适合长期自治的强大而可扩展的空间感知系统。