GDM的全球患病率在5.8%至11.7%之间。6流行率的广泛差异可能是由GDM诊断标准的差异来解释的。6尽管90%的GDM病例将在分娩后正常化,但有些案件将持续存在,而妇女将发展糖尿病前期或DM。据报道,分娩后五年后约有50%的GDM患者被诊断为2型DM。7在斯里兰卡(Sri Lanka),一项纵向研究发现,与没有GDM相比,GDM女性在10年持续时间内患糖尿病的几率是10.6倍。8然而,生活方式干预措施有机会减慢这些女性中2型糖尿病的进展。9重要的是向具有GDM的女性提供准确,及时的信息,以了解其未来患糖尿病的风险。他们还应该接受根据需求量身定制的干预措施。确保有关积极生活方式修正案的行为的持续改变,应考虑几个要素,包括风险感知,信念和心理社会障碍。10除其他外,风险感知被确定为各种理论健康模型中健康行为的重要决定因素。11对患有未来糖尿病的高风险感知的女性更有动力进行筛查和生活方式改变。12关于发育糖尿病(RPS-DD)问卷的风险感知调查评估了一个人感知的患有这种疾病的风险的各个方面。13此工具由乐观偏见,个人控制,糖尿病风险因素知识,福利和障碍以及风险感知组成。最初用于预防糖尿病计划密歇根州糖尿病研究中心,14它在GDM母亲之间进行了随后的验证过程。13使用Cronbach的α的内部一致性非常出色(0.65至0.72)。RPS-DD问卷开发过程是彻底且多阶段的。但是,可以组织其他研究以评估验证性因素分析和评估其外部有效性。此外,马来语中没有发表的工具来衡量该人群中糖尿病的风险感知。这项研究旨在适应,翻译和
计算机视觉社区过去主要集中于视觉算法的开发,用于对象检测,跟踪和分类,并在白天和类似办公室的环境中使用可见的范围传感器。在过去的十年中,红外线(IR),深度,X射线和其他不可见名的成像传感器仅在医学和防御等特殊领域中使用。与传统的计算机视觉相比,在这些感觉领域的兴趣相对较低,部分原因是它们的高成本,低分辨率,图像质量差,缺乏广泛可用的数据集以及/或缺乏对频谱不可访问的部分的优势的考虑。随着传感器技术的迅速发展,传感器成本急剧下降,这些局限性正在克服。此外,对安全和可靠性是主要问题的自主系统的兴趣日益增强,强调了强大的感知系统的重要性。在此类关键系统中,在不同频谱中运行的传感器相互补充,以克服每个单独的传感器的局限性,以在各种照明和天气条件下提供强大而可靠的感知。
尽管基于3D的GAN技术已成功地应用于具有各种属性的照片真实的3D图像,同时保持视图一致性,但很少有关于如何罚款3D impersimens的研究,而不会限制其属性特定对象的特定对象类别。为了填补此类研究空白,我们提出了一个基于3D的GAN代表的新型图像操纵模型,以对特定的自定义贡献进行细粒度控制。通过扩展最新的基于3D的GAN模型(例如,EG3D),我们的用户友好定量操作模型可以实现对3D操作多属性数量的精细而归一化的控制,同时实现了视图一致性。我们通过各种实验验证了我们提出的技术的有效性。
面部表达识别(FER)在计算机视觉应用中起着关键作用,包括视频不存在和人类计算机的相互作用。尽管FER的进展没有局部进步,但在处理在现实世界情景和数据集中遇到的低分辨率面部图像时,性能仍然会摇摆不定。一致性约束技术引起了人们的关注,以产生强大的卷积神经网络模型,从而通过增强来适应变化,但它们的功效在低分辨率FER的领域中得到了影响。这种性能下降可以归因于网络难以提取表达特征的增强样本。在本文中,我们确定了在考虑各种程度的分辨率时引起过度拟合问题的硬样品,并提出了新颖的硬样品感知一致性(HSAC)损失函数,其中包括组合注意力同意和标签分布学习。通过结合高分辨率和翻转低分辨率图像的激活图,将注意力图与适当的目标注意图与适当的目标注意图与适当的目标注意力图相结合的注意图与适当的目标注意力图的注意力图对齐。我们通过结合原始目标和高分辨率输入的预测来测量低分辨率面部图像的分类难度,并适应标签分布学习。我们的HSAC通过有效管理硬样品来赋予网络能够实现概括。各种FER数据集上的广泛实验证明了我们提出的方法比现有方法的多尺度低分辨率图像的优越性。此外,我们在原始RAF-DB数据集中达到了90.97%的最新性能。
抽象目的:它的目的是探索自我效能感和财务焦虑水平在健康和旅游学生的生活满意度对大脑流失看法的影响中的串行调解作用。方法:在这项描述性研究中,在Antalya,Türkiye和串行中介模型和回归分析中,使用四个量表,生命满意度,自我效能,经济焦虑量(自我满意度,自我效率,财务焦虑)收集了403名参与者的数据。结果:根据数据,83.3%的旅游业,74.8%的护理,56.5%的牙科和55.7%的医学院学生表示他们正在考虑毕业后正在迁移。生活满意度对自我效能感和对财务焦虑的负面影响产生了积极影响,对财务焦虑的自我效能感具有积极影响。生命满意度对大脑流失有直接的负面影响,而自我效能感和财务焦虑对大脑排水产生了积极影响。学生对生活满意度的看法是大脑流失意图的重要先决条件,自我效能感和财务焦虑对这种影响具有中介作用。最影响其迁移意图的因素是脑力流失态度和教职员工。财务焦虑,自我效能感和出国意图是影响大脑流失看法的变量。结论:本研究中表达的移民意图和大脑消耗态度预测,对该国的医疗保健和旅游服务的可持续性构成了直接和严重的威胁。需要采取干预措施,例如改善财务焦虑和提供生活满意度。关键词:脑力消耗,财务焦虑,生活满意度,移民,自我效能,串行模型分析,学生
,QWURGXFWLRQ口语技术的域范围从语音输入和输出系统到复杂的理解和生成系统,包括具有广泛差异的复杂性(例如自动命令机)和多语言系统(例如自动对话和翻译系统)的多模态系统。对此类系统的标准和评估方法的定义涉及高度特定的口语语料库和词典资源的规范和开发,以及测量和评估工具。在开始时,这些领域的标准是从以前在许多欧洲和国家项目中建立的口语社区中的共识得出的,它参考了美国和日本的重要举措。主要是SAM项目(集中在组件技术评估和语料库创建上),SQALE(用于大型词汇系统评估)以及日d和Sundial和Sunstar(用于多模式系统)过去和现在的项目在评估和资源领域具有重要的产量,包括ARS,Relator,Onomastica和SpeechDat,以及德国的Verbmobil等主要国家项目和研究计划。
糖尿病管理中越来越多的证据使疾病感知与对病情的成功控制,并改善了成年人的健康结果(1,2)。青少年通常很难遵守糖尿病护理计划(3,4),以便更好地了解他们对疾病的看法可以帮助改善其控制和健康成果(5,6)。此外,在青春期还形成了疾病感知,这使得这是一个重要的时期,在其中考虑这种情况(7,8)。尽管有充分的证据表明疾病对成年人的重要性,但对于青少年来说,这是尚无定论的(9,10)。可用的研究主要集中于提供不一致结果的定量研究(6,11)。在本文中,在一项审查研究的支持下,三项研究的定性发现强调了疾病在青少年发展框架内的重要性,并建议未来的研究以操作这些发现。本文的独创性在于对患者声音的有效使用和反映,这在医学研究中通常不存在。
计算机视觉社区过去主要集中于视觉算法的开发,用于对象检测,跟踪和分类,并在白天和类似办公室的环境中使用可见的范围传感器。在过去的十年中,红外线(IR),深度,X射线和其他不可见名的成像传感器仅在医学和防御等特殊领域中使用。与传统的计算机视觉相比,在这些感觉领域的兴趣相对较低,部分原因是它们的高成本,低分辨率,图像质量差,缺乏广泛可用的数据集以及/或缺乏对频谱不可访问的部分的优势的考虑。随着传感器技术的迅速发展,传感器成本急剧下降,这些局限性正在克服。此外,对安全和可靠性是主要问题的自主系统的兴趣日益增强,强调了强大的感知系统的重要性。在此类关键系统中,在不同频谱中运行的传感器相互补充,以克服每个单独的传感器的局限性,以在各种照明和天气条件下提供强大而可靠的感知。
摘要:由于食物的复杂状态和多样化的物理特性,有效地挖出食品对当前机器人系统构成了重大挑战。为了应对这一挑战,我们相信将食品编码为有意义的有效食品的重要性。然而,食品的独特特性,包括可变形,脆弱性,流动性或粒度,对现有表示构成了重大挑战。在本文中,我们以隐式方式提出了积极感知来学习有意义的食物代表的潜力。为此,我们提出了Scone,这是一个食品搜索机器人学习框架,利用从积极的掌握中获得的表示形式来促进食品可铲政策学习。Scone包括两个Crucial编码组件:交互式编码器和状态检索模式。通过编码过程,Scone能够捕获食品的特性和重要的状态特征。在我们的现实世界中的实验中,Scone在三种不同的难度水平上使用6种以前看不见的食品时,成功率具有71%的成功率,超过了最先进的方法。这种增强的性能强调了Scone的稳定性,因为所有食品始终达到超过50%的任务成功率。此外,Scone可容纳各种初始状态的令人印象深刻的能力使其能够精确评估食物的当前状况,从而导致了令人信服的成功率。有关更多信息,请访问我们的网站。