1 中国科学技术大学合肥国家微尺度物质科学研究中心、现代物理系,安徽合肥 230026 2 中国科学技术大学中国科学院上海分中心量子信息与量子物理卓越创新中心,上海 201315 3 上海量子科学研究中心,上海 201315 4 中国科学院物理研究所,北京 100190 5 中国科学院大学物理学院,北京 100190 6 日本理化学研究所理论量子物理实验室,埼玉县和光市 351-0198,日本 7 松山湖材料实验室,广东东莞 523808 8 中国科学院大学中国科学院拓扑量子计算卓越创新中心,北京 100190
我们开发了探测量子信息动态的技术,并在 IBM 超导量子处理器上进行了实验。我们的协议采用阴影层析成像来研究时间演化通道而不是量子态,并且仅依赖于单量子比特操作和测量。我们确定了量子信息扰乱的两个明确特征,这两个特征都无法通过耗散过程模仿,并将它们与多体隐形传态联系起来。通过在实验中实现量子混沌动力学,我们测量了这两个特征,并通过量子系统的数值模拟支持我们的结果。我们还研究了这种动力学下的算子增长,并观察了量子混沌的行为特征。由于我们的方法一次只需要一个量子态,因此可以很容易地将它们应用于各种量子模拟器。
。CC-BY-ND 4.0 国际许可下可用(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2021 年 2 月 8 日发布。;https://doi.org/10.1101/2021.02.08.430302 doi:bioRxiv 预印本
在 D 维格子上距离 r 中的 α ≤ D — 近年来引起了人们的极大兴趣。它们存在于量子计算和模拟的主要实验平台中,以及量子信息加扰和快速纠缠产生的理论模型中。由于此类系统不具备局部性概念,因此人们对其动态特性缺乏一般性的了解。为了解决这个问题,我们证明了两个新的 Lieb-Robinson 型界限,它们限制了强远程相互作用系统中信号发送和加扰的时间,此前尚无此类系统的严格界限。我们的第一个界限适用于可映射到具有远程跳跃的自由粒子汉密尔顿量的系统,并且对于 α ≤ D/ 2 是可饱和的。我们的第二个界限适用于一般的远程相互作用自旋汉密尔顿量,并给出了对所有 α < D 的系统广泛子集的信号发送时间的严格下限。这种多站点信号传输时间限制了强远程相互作用系统中的加扰时间。
1 英国剑桥大学医学研究委员会生物统计学部,英国剑桥 2 德国伍珀塔尔拜耳制药公司、开放式创新和数字技术部,英国伦敦 3 英国伦敦大学学院英国心脏基金会研究加速器学院,英国伦敦 4 英国伦敦大学学院医院、NIHR 生物医学研究中心,英国伦敦 5 英国剑桥大学公共卫生与初级保健系心血管流行病学部,英国剑桥 6 英国布里斯托尔大学 NIHR 布里斯托尔生物医学研究中心,英国布里斯托尔 7 英国牛津大学医学研究委员会人口健康研究部,英国牛津 8 德国慕尼黑系统神经病学集群 (SyNergy) 9 德国神经退行性疾病中心 (DZNE),德国慕尼黑 10 英国史蒂文尼奇葛兰素史克人类遗传学部,英国美国华盛顿州西雅图 13 挪威科技大学 NTNU 公共卫生与护理系 KG Jebsen 遗传流行病学中心,挪威特隆赫姆 14 英国伦敦帝国理工学院公共卫生学院流行病学与生物统计学系 15 英国伦敦帝国理工学院医学系药理学与治疗学中心 16 英国牛津诺和诺德研究中心 17 英国伦敦大学圣乔治医院医学与生物医学教育研究所及感染与免疫研究所临床药理学与治疗学科 18 英国伦敦圣乔治大学医院 NHS 基金会药学与药品理事会临床药理学组 19 德国慕尼黑路德维希马克西米利安大学 (LMU) 医院中风与痴呆症研究所 (ISD) 20 综合医学研究委员会英国布里斯托尔布里斯托大学流行病学系 21 英国布里斯托尔布里斯托大学布里斯托医学院人口健康科学系 22 美国宾夕法尼亚州费城宾夕法尼亚大学佩雷尔曼医学院外科系 23 英国伦敦大学学院人口健康学院心血管科学研究所 24 荷兰乌得勒支大学医学中心心肺科心脏病学系
为了开发量子技术,可靠地处理量子信息需要精确控制非平衡多体系统。这是一项极具挑战性的任务,因为量子态对外部扰动的脆弱性会随着系统规模的增大而增加。在这里,我们报告了一系列实验性量子模拟,这些模拟量化了受控汉密尔顿演化对驱使系统偏离目标演化的扰动的敏感性。基于非时间有序关联,我们证明过程保真度的衰减率随着关联量子比特的有效数量 K 的增加而增加,即 K α 。作为扰动强度的函数,我们观察到两个不同动力学状态之间指数 α 的退相干缩放转变。在低于临界扰动强度的极限情况下,指数 α 急剧下降到 1 以下,并且可控制的量子比特数没有固有限制。量子信息受控动力学的这种弹性量子特性有望实现对大型量子系统的可靠控制。
为了开发量子技术,可靠的量子信息处理需要精确控制非平衡多体系统。这是一项极具挑战性的任务,因为量子态对外部扰动的脆弱性会随着系统尺寸的增加而增加。在这里,我们报告了一系列实验性量子模拟,这些模拟可以量化受控汉密尔顿演化对驱使系统偏离目标演化的扰动的敏感性。基于非时间序相关性,我们证明过程保真度的衰减率随着相关量子比特的有效数量 K 的增加而增加,即 K α 。作为扰动强度的函数,我们观察到两个不同动力学区域之间指数 α 的急剧退相干缩放转变。在低于临界扰动强度的极限情况下,可以高保真度控制的量子比特数量没有固有限制。这可能表明,如果扰动能够保持在这个临界阈值以下,那么对大型量子系统的可靠控制是可能的。
Charlotte Gehin, 1 Museer A. Lone, 2 Winston Lee, 3,4 Laura Capolupo, 1 Sylvia Ho, 1 Adekemi M. Adeyemi, 5 Erica H. Gerkes, 6 Alexander PA Stegmann, 7 Estrella López-Martín, 8 Eva Bermejo-Sánchez, 8 Martínez, Martínez, Dzierz , 9,10 Cornelia Kraus, 9 Bernt Popp, 11,12 Vincent Strehlow, 11 Daniel Gräfe, 13 Ina Knerr, 14,15 Eppie R. Jones, 16 Stefano Zamuner, 17 Luciano A. Abriata, 18 Vidya Kunnathully, 1 19 Anthony Eller, Samuel Anthony, 1. 21 Jean-Philippe Bocquete, 21 Evelyne Ruchti, 22 Greta Limoni, 22 Marine Van Campenhoudt, 22 Samuel Bourgeat, 22 Petra Henklein, 23 Christian Gilissen, 24,25 Bregje W. van Bon, 24 Rolph Pfundt, 25 Landa, 24 Jole, H. H. Schemjole. 26 Emanuela Leonardi, 27,28 Fiorenza Soli, 29 Alessandra Murgia, 28 Hui Guo, 30 Qiumeng Zhang, 30 Kun Xia, 30 Christina R. Fagerberg, 31 Christoph P. Beier, 31 Martin J. Larsen, 31 Irene Xienzu, 32 Fernando Valyinda , 33 Robert Śmigiel, 34 Vanesa López-González, 35 Lluís Armengol, 36 Manuela Morleo, 37,38 Angelo Selicorni, 39 Annalaura Torella, 37,38 Moira Blyth, 40 Nicola S. Cooper, 41 Vare Wilson, 44, 434 ore Garde, 45,46 Ange-Line Bruel, 46,47 Frederic Tran Mau-Them, 46,47 Alexis BR Maddocks, 48 Jennifer M. Bain, 49 Musadiq A. Bhat, 50 Gregory Costain, 51 Peter Kannu, 52 Ashish Marwaha, 51 Michael E. E. Friegne, 35 B. Richardson, 53 Vykuntaraju K. Gowda, 54 Varunvenkat M. Srinivasan, 54 Yask Gupta, 55 Tze Y. Lim, 55 Simone Sanna-Cherchi, 55 Bruno Lemaitre, 21 Toshiyuki Yamaji, 56 Kentaro Hanada, 56 John E. Burke, 2017, Ana Briš , D. McCa . abe, 22 Paolo De Los Rios, 1,17 Thorsten Hornemann, 2 Giovanni D'Angelo, 1,19,21 and Vincenzo A. Gennarino 3,58,59,60,61
腺苷到肌苷的 RNA 编辑和前 mRNA 剪接主要在转录过程中发生并相互影响。在这里,我们使用缺乏两种编辑酶 ADAR(ADAR1)或 ADARB1(ADAR2)之一的小鼠来确定 RNA 编辑对不同组织剪接的转录组范围影响。我们发现 ADAR 对剪接的影响比 ADARB1 高 100 倍,尽管这两种酶都靶向相似数量的底物,并且有很大的共同重叠。一致地,差异剪接区域经常包含 ADAR 编辑位点。此外,催化失活的 ADAR 也会影响剪接,表明 ADAR 的 RNA 结合会影响剪接。相反,ADARB1 编辑位点在差异剪接区域的 5' 处富集。这些 ADARB1 介导的编辑事件中的几个会改变剪接共识序列,因此强烈影响某些 mRNA 的剪接。差异编辑位点和差异剪接位点之间的显著重叠表明,剪接的进化选择受到组织特异性编辑的调控。
目的:Cav-1在维持血管内皮稳态中起着至关重要的作用。内皮功能障碍与许多缺血性疾病有关。然而,Cav-1在心肌梗死(MI)中的作用尚未完全阐明。本研究旨在阐明Cav-1在MI损伤中的作用及其对内皮稳态的影响。方法:为了阐明Cav-1在体内MI中的作用,我们构建了整体敲除Cav-1(Cav-1-KO)小鼠。我们在体外通过siRNA操纵Cav-1的表达以评估内皮细胞(EC)缺氧模型下细胞凋亡、炎症反应和氧化应激以及自噬通量的影响。结果:最初,我们发现Cav-1主要在心肌血管内皮细胞中表达。有趣的是,我们发现 Cav-1 缺乏会显著增加心肌梗死面积的大小,同时会导致体内心脏功能恶化。在体外,siRNA 介导的 Cav-1 敲低加剧了内皮细胞凋亡、炎症反应和氧化应激,并消除了自噬通量。然而,用 β -环糊精 (β -CD) 预处理,会消耗膜结合胆固醇并破坏脂筏,从而显著减轻 Cav-1 下调引起的效应。结论:总之,在这项研究中,我们证明 Cav-1 通过维持内皮稳态充当 MI 损伤的保护性调节器。这些发现意味着 Cav-1 可能是 MI 损伤的潜在治疗靶点。