利什曼病是由利什曼原虫属的原生动物寄生虫引起的媒介传播疾病,是一种复杂的疾病,主要影响世界上热带地区。不幸的是,尽管付出了广泛的努力,但没有可供人类使用的疫苗。无疑,对宿主 - 载体 - 寄生虫相互作用的全面了解对于开发有效的预防性疫苗是重要的。最近已经发现了沙蝇唾液在疾病进展中的作用,这可以在疫苗设计中做出重大贡献。在这篇综述中,我们试图关注最有可能符合疫苗开发先决条件的策略(基于当前的理解),包括活着的衰减/非致病性和亚基DNA疫苗。创新的方法,例如反向遗传学,酥脆/R-CAS9和无抗生素选择,可以有效地弥补与这些平台相关的固有缺陷。我们的主要目标是在控制疾病的同时更加注意有效疫苗开发的先决条件是巨大的需求。
简介 墨西哥利什曼原虫是一种可感染人类的单细胞真核生物,是引起利什曼病的物种之一。由于其毒性较低(引起皮肤利什曼病而非内脏利什曼病)并且能够在适当的无菌培养中容易分化为无鞭毛体形式,它通常被用作分子细胞生物学的模型利什曼原虫物种。我们之前曾描述过表达 Cas9 和 T7 RNA 聚合酶的转基因墨西哥利什曼原虫 MNYC/BZ/62/M379 的生成,该菌株可进行快速反向遗传修饰 1 。由于这不是参考基因组菌株(参考基因组菌株为 MHOM/GT/2001/U1103) 2 并且可能在实验室培养和/或 Cas9 或 T7 表达的选择压力下积累了突变,因此我们对这种广泛使用的菌株的基因组进行了测序,作为设计反向遗传策略的高质量参考。
随着被忽视的热带疾病利什曼病在全球范围的蔓延,再加上治疗方法有限,且这些治疗方法都存在耐药性、成本、毒性和/或给药问题,在病原昆虫媒介原生动物利什曼原虫中验证新药物靶点比以往任何时候都更加重要。在 2015 年引入 CRISPR Cas9 技术之前,新靶点的基因验证主要通过同源重组进行靶向基因敲除,其中大多数靶向基因(约 70%)被视为非必需基因。在本研究中,我们利用现成的全基因组测序技术重新分析了这些历史细胞系之一,即 L. major 敲除丝氨酸棕榈酰转移酶 (LCB2) 催化亚基,这会导致鞘脂生物合成完全丧失,但仍具有活力和感染性。结果发现了许多单核苷酸多态性,但也揭示了几个编码区的完全丢失,包括一个编码假定的 ABC3A 直系同源物(假定的固醇转运蛋白)的基因。假设这种转运蛋白的缺失可能促进了 LCB2 催化亚基的定向敲除和从头鞘脂生物合成的完全丧失,我们重新检查了 L. mexicana 品系中的 LCB2,该品系经过工程改造,可直接通过 CRISPR Cas9 定向操作。令人惊讶的是,LCB2 无法被敲除,表明其是必需的。然而,同时删除 LCB2 和假定的 ABC3A 是可能的。这表明假定的 ABC3A 的缺失促进了利什曼原虫中鞘脂生物合成的丧失,并表明我们应该重新检查许多其他基因被视为非必需的利什曼原虫敲除品系。
车辆的功能和规格如有更改,恕不另行通知。拍摄的车辆可能包括基本型号中未包含的选项。加利福尼亚州法律禁止销售2025年型号,后来又以汽油动力的高尔夫球车出售。©2024 Textron Specialized Vehicles Inc. 82288-G13(Rev.06/2024)
利什曼病,是一种由利什曼原虫寄生虫引起的寄生疾病,位于感染的沙蝇中。控制利什曼病仍然是全世界引起严重关注的根源。关于利什曼病的研究引发了研究,因为它在亚洲,东非和南美的热带和亚热带地区爆发。迫切需要新的治疗性干预措施,例如疫苗和新药物靶标,因为它具有对可用药物的抗性。槲皮素,多酚类黄酮的衍生物通过与蛋白质和核酸相互作用表现出各种生物学活性。在这项研究中,进行了计算分析,以通过分子对接在利什曼原虫物种中识别槲皮素的潜在药物靶标。新预测的靶标受到亚细胞定位预测,并确定蛋白质 - 蛋白质相互作用网络,该网络将有助于开发抗脊髓药。这项研究有助于鉴定靶标和抗脊髓药物的发展。
神经认知能力下降是当今医学中最重要的可怕问题之一。痴呆发病机理的机制是复杂且多因素的,尤其是在阿尔茨海默氏病(AD)的情况下。一个无可辩驳的但无法解释的因素是AD的性别差异,其中妇女受到疾病的速度和严重程度的AD影响不成比例的影响。检查多方面的促成原因以及可改变的危险因素(例如饮食)中的独特性别动态,可能会深入了解这种差异的存在和前进的潜在路径。这篇简短的叙述性综述的目的是总结当前饮食习惯中性别差异的文献,以及它们如何与有助于AD发病机理的神经炎症状态有关。因此,将讨论饮食,荷尔蒙和炎症之间的相互作用,以及潜在的干预措施以提供护理实践。
摘要 利什曼病是由利什曼属的多种专性细胞内原生动物引起的传染病,其疾病表现为皮肤、粘膜和内脏形式。尽管利什曼病在 80 多个国家流行,并且是高发病率和死亡率的原因,但它仍然是一种被忽视的热带疾病。化疗是一线治疗方法,但目前使用的药物存在毒性副作用、给药困难和治疗时间延长的问题——此外,耐药性正在出现。新的抗利什曼病药物是公认的国际优先事项。在这里,我们回顾了对 N-肉豆蔻酰转移酶 (NMT) 作为潜在药物靶点的研究。NMT 催化 C 14 脂肪酸从肉豆蔻酰辅酶 A 到真核细胞中大量蛋白质的 N 端甘氨酸残基的共翻译转移。这种共价修饰影响底物蛋白与脂质和伴侣蛋白的稳定性和相互作用。针对杜氏利什曼原虫 NMT 的高通量筛选活动产生的新先导化合物的结构指导开发导致了强效抑制剂的发现,这些抑制剂被用于深入了解蛋白质肉豆蔻酰化在这些寄生虫中的作用,并验证 NMT 作为药物靶点。
细胞处理信息的能力目前用于设计基于细胞的工具,用于生态,工业和生物医学应用,例如检测危险化学物质或生物修复。在大多数应用中,单个单元格被用作信息进程单元。但是,单细胞工程受到必要的分子综合性和伴随的合成回路代谢负担的限制。为了克服这些局限性,合成生物学家已经开始工程多细胞系统,将细胞与设计的亚功能结合在一起。为了进一步推进合成多细胞系统中的信息处理,我们介绍了储层计算的应用。储层计算机(RCS)通过带有基于回归的读数的固定规则动态网络(储层)近似时间信号处理任务。重要的是,RCS消除了网络重新布线的需求,因为可以使用相同的储层近似不同的任务。预见的工作已经证明了单细胞和神经元种群充当储层的能力。在这项工作中,我们在多细胞种群中扩展了储层计算,并具有基于扩散的细胞间信号传导的广泛机制。作为概念验证,我们模拟了由3D通过扩散分子通信的细胞社区制成的储层,并将其用于近似二进制信号处理任务,重点介绍了两个基准功能 - 从二进制输入信号中分配中位数和平等功能。我们证明了基于扩散的多细胞储层是一种可行的合成框架,用于执行复杂的时间计算任务,该框架比单个单元格储层提供了计算优势。我们还确定了许多可能影响这些处理系统计算性能的生物学特性。
由原生动物寄生虫利什曼尼亚(Leishmania)的各种物种引起的利什曼尼亚疾病继续构成重大的全球健康挑战。药物一直处于打击这些疾病的最前沿,为受苦的人群提供了希望。本评论文章提供了:(1)对当前知识和利什曼尼亚疾病的杂环药物疗法不断发展的景观的全面分析; (2)专注于药物作用机理; (3)治疗作用; (4)副作用; (5)潜在的未来方向。审查首先概述了杂环药物在治疗利什曼尼亚疾病中的重要重要性。它突出了用于对抗利什曼原虫的各种药物,并阐明了其功效的独特机制。这些机制包括寄生虫内细胞过程的破坏,对DNA复制的干扰以及宿主免疫反应的调节。此外,本文深入研究了药物治疗的影响和副作用,对他们对患者的影响进行了深入的分析。它强调了有效的寄生虫清除和最大程度地减少不良反应之间需要保持平衡的需求,这强调了持续研究对完善药物治疗方案的重要性,并降低了耐药性。该评论还探讨了从化学疗法到免疫疗法的利什曼病疾病的各种疗法,并讨论了它们的优势和局限性。此外,它讨论了正在进行的研究工作,旨在开发新型药物配方,例如脂质体和基于纳米载体的递送系统,以增强药物疗效并降低毒性。本文至关重要地关注利什曼尼亚疾病的杂环药物疗法的未来观点。它强调了跨学科研究和整合新兴技术(例如基因组学和蛋白质组学)来确定疾病控制的新药物目标和策略的重要性。还将讨论联合疗法和免疫调节剂改善治疗结果和战斗耐药性的潜力。