摘要Venetoclax自2016年以来已被美国食品药品监督管理局批准,是治疗患有17p缺失的复发/难治性慢性淋巴细胞性白血病患者的单一治疗。这导致了近年来血液学恶性肿瘤治疗的突破。不幸的是,对威尼诺克拉克斯的抵抗是不可避免的。多项研究证实,由肿瘤微环境(例如肿瘤微环境)介导的B细胞淋巴瘤2(BCL2)家族的抗凋亡蛋白的上调以及细胞内信号传导途径的激活是导致对维纳特卡克斯的抗性的主要因素。因此,只有靶向BCL2通常无法达到预期的治疗效果。基于特定血液逻辑恶性肿瘤中抗性的机制,特定药物与维内托克拉克斯的组合是克服对维内托克拉克斯抗性的临床可选治疗策略。这项研究旨在总结各种血液学肿瘤对威尼诺克斯群岛的可能抗性机制以及在血液学恶性肿瘤中克服对威尼诺克拉克斯抗性的相应临床策略。关键字:BCL2,BCL-XL,组合策略,血液系统恶性肿瘤,MCL1,阻力,venetoclax
淋巴浆淋巴瘤(LPL)是一种无法治愈的低度淋巴瘤,没有标准治疗。用第一个人类,新抗原DNA疫苗治疗的九名无症状患者没有剂量限制毒性(Primary Endpoint,NCT01209871)。所有患者都达到稳定的疾病或更好的疾病,其中一个较小的反应,中位时间为72个月以上。疫苗后单细胞转录组学显示二分法抗肿瘤反应,肿瘤B细胞降低(由独特的B细胞受体跟踪)及其表面途径,但克隆等离子体细胞没有变化。通过后一种人类白细胞抗原(HLA)II类分子和胰岛素样生长因子(IGF)的矛盾上调的下调,这表明抗性机制。疫苗疗法激活并扩展骨髓T细胞插入型,功能性新抗原特异性反应(次要终点),但不能降低髓样细胞的原始信号传导,提出了有利的tumor tumor themor himeRune Microenvironment。未来的策略可能需要将疫苗与靶向浆细胞亚群或IGF-1 signaLing或髓样细胞检查点的阻滞剂组合。
摘要尽管免疫疗法可以为各种难以治疗的癌症患者提供深远的临床益处,但许多肿瘤要么对使用免疫检查点抑制剂(ICI)(ICIS)(ICIS)或进行性/复发性疾病反应后,在初始控制的间隔后发生。的缓解率,从而获得了其他国家 /地区的美国食品药品监督管理局和监管机构的批准,用于在许多实体肿瘤指示中的ICI化学疗法组合,包括乳房,头部和颈部,胃,胃和肺癌。为没有反应或停止对免疫疗法组合治疗的肿瘤患者设计试验,这是具有挑战性的,没有抗抗性的均匀定义。以前,癌症免疫疗法学会(SITC)公布了对单药反编程细胞死亡蛋白1(PD-1)的抗性的共识定义。为了为临床试验设计提供指导,并支持对基于ICI的组合的抗性机制的新兴分子和细胞数据的分析,SITC在2021年召集了一个后续研讨会,以开发出对多种ICI ICI组合的耐药性的共识定义。本手稿报告了ICIS和化学疗法组合的共识临床定义。与靶向疗法和其他ICI结合使用的ICIS的定义将在本文的同伴卷中发表。
HSP90 已成为一个有吸引力的抗癌靶点。然而,HSP90 抑制剂(HSP90i)的临床实用性有限,主要是因为通过热休克反应(HSR)诱导获得抗性。了解大量表达的胞浆 HSP90 亚型(α 和 β )在维持恶性细胞生长中的作用以及对 HSP90i 的抗性机制对于挖掘其临床潜力至关重要。利用多组学方法,我们发现 HSP90 β 亚型的消融会诱导 HSP90 α 和细胞外分泌 HSP90 α(eHSP90 α )的过度表达。值得注意的是,我们发现 HSP90 α 的缺失会导致 PTPRC(或 CD45)表达下调并限制 BCR-ABL1 + 白血病细胞的体内生长。随后,长期暴露于临床晚期 HSP90i PU-H71 (Zelavespib) 导致 HSP90AA1 基因拷贝数增加和突变 (p.S164F),以及 HSP90 α 过表达。相反,通过 MDR1 流泵过表达获得了对其他测试的 HSP90i (Tanespimycin 和 Coumermycin A1) 的获得性耐药性。值得注意的是,联合使用 CDK7 和 HSP90 抑制通过阻断促存活 HSR 和 HSP90 α 过表达对治疗耐药的 BCR-ABL1 + 患者白血病细胞表现出协同活性,提供了一种避免出现对单独使用 HSP90i 治疗产生耐药性的新策略。
雄激素受体 (AR) 顺反组在前列腺细胞身份的形成中至关重要,而其失调会促进前列腺癌的发展。先驱转录因子 Forkhead box A1 (FOXA1) 已被证明对 AR 募集到雄激素反应元件 (ARE) 至关重要,从而允许对 AR 顺反组进行重新编程,导致前列腺细胞转化。FHD-286 是一种 BRM/BRG1 双 ATPase 抑制剂,目前正在进行 AML 临床试验。在这里,我们表明用 FHD-286 治疗前列腺癌细胞系会导致肿瘤相关 AR 结合位点 (T-ARBS) 处 FOXA1 介导的 ARE 消融。双 ATPase 治疗随后降低了各种致癌 AR 靶基因的表达水平,导致肿瘤细胞活力下降。患者来源的类器官和体内研究均通过显示肿瘤生长减少提供了进一步的验证。令人惊讶的是,抑制 BAF 复合物活性可绕过去势和恩杂鲁胺治疗后常见的 AR 抗性机制,因为含有 AR-V7 剪接变体和神经内分泌类器官的细胞系表现出敏感性。总之,我们的数据说明了通过使用 FHD-286 治疗抑制肿瘤相关 ARE 来治疗 AR 介导的前列腺癌的一种新机制。
摘要:来自苏云金芽孢杆菌 (Bt) 的杀虫蛋白被广泛用于喷雾剂和转基因作物中以控制害虫。然而,害虫的抗性进化会降低 Bt 毒素的有效性。在这里,我们分析了小菜蛾 (Plutella xylostella) 对 Bt 毒素 Cry1Ac 和 Cry1Fa 的抗性,小菜蛾是世界上最具破坏性的蔬菜作物害虫之一。我们利用 CRISPR/Cas9 基因编辑创建了 ATP 结合盒 (ABC) 转运蛋白基因 PxABCC2 、PxABCC3 或两者均被敲除的菌株。生物测定结果表明,单独敲除任一基因最多会导致抗性增加 2.9 倍,但同时敲除两个基因会导致对 Cry1Ac 的抗性增加 10,320 倍以上,对 Cry1Fa 的抗性增加 380 倍。双基因敲除菌株的 Cry1Ac 抗性是隐性的,与 PxABCC2/PxABCC3 基因座有遗传关联。这些结果为了解小菜蛾对 Cry1Fa 的交叉抗性机制提供了见解。它们还证实了之前对这种害虫的研究,即破坏两个基因的突变比仅影响 PxABCC2 或 PxABCC3 的突变对 Cry1Ac 的抗性更强。结合之前的研究,本文的结果强调了使用单基因和多基因敲除的价值,可以更好地了解假定的 Bt 毒素受体对 Bt 毒素抗性的独立和协同作用。
由于细菌和昆虫广泛分布于全球,因此细菌和昆虫之间的相互作用会对许多不同领域产生重大影响。由于昆虫是疾病传播的媒介,细菌与昆虫之间的相互作用可能会直接影响人类健康,而且它们之间的相互作用还可能产生经济后果。此外,细菌与昆虫之间的相互作用还与经济上重要的昆虫的高死亡率有关,从而造成巨大的经济损失。微小RNA(miRNA)是一种非编码RNA,参与转录后基因表达的调控。miRNA的长度为19至22个核苷酸。除了能够表现出动态表达模式外,miRNA还具有多种靶标。这使它们能够控制昆虫的各种生理活动,如先天免疫反应。越来越多的证据表明,miRNA通过影响免疫反应和其他抗性机制,在细菌感染中发挥着至关重要的生物学作用。本综述重点介绍了近年来的一些最新和令人兴奋的发现,包括细菌感染背景下 miRNA 表达失调与感染进展之间的相关性。此外,它还描述了它们如何通过靶向 Toll、IMD 和 JNK 信号通路对宿主的免疫反应产生深远影响。它还强调了 miRNA 在调节昆虫免疫反应中的生物学功能。最后,它还讨论了目前关于 miRNA 在昆虫免疫中的作用的知识空白,以及未来需要更多研究的领域。
抗抗性机制在人类T细胞急性淋巴淋巴细胞linlin CAO 1,Gustavo A.RuizBuendía2,Nadine Fournier 1,2,Yuanlong Liu 3-5,Florence Armand 6,Romain Hamelin 6,Romain Pavloun 6,Yuan hamelique Raddy 1 * 1 * De Lausanne(EPFL),瑞士实验癌症研究所(ISREC)生命科学学院,瑞士癌症中心Leman(SCCL),第19站,CH-1015瑞士洛桑CH-1015。2转化数据科学,瑞士生物信息学研究所(SIB),Agora Cancer Research Center,CH-1011 Lausanne,瑞士。3洛桑大学(UNIL)计算生物学系,瑞士洛桑CH-1015。4瑞士癌症中心Leman(SCCL),CH-1011 Lausanne,瑞士。 5瑞士生物信息学研究所(SIB),瑞士洛桑CH-1015。 6蛋白质组学核心设施,Ecole PolytechniquefédéraledeLausanne(EPFL),瑞士CH-1015洛桑生活科学学院。 简短标题:T-ALL关键字中的抵抗机制和组合疗法:Notch1,T-All,Pik3R1,电阻机制,组合疗法的关键点:4瑞士癌症中心Leman(SCCL),CH-1011 Lausanne,瑞士。5瑞士生物信息学研究所(SIB),瑞士洛桑CH-1015。6蛋白质组学核心设施,Ecole PolytechniquefédéraledeLausanne(EPFL),瑞士CH-1015洛桑生活科学学院。简短标题:T-ALL关键字中的抵抗机制和组合疗法:Notch1,T-All,Pik3R1,电阻机制,组合疗法的关键点:
1 PG学者,结构工程,库姆拉古鲁技术学院2库姆拉古鲁技术学院结构工程副教授,库姆拉古鲁技术学院摘要水泥,对建筑至关重要,对重金属污染产生了重大的环境风险,包括铅,钙,铬,铬,镍,镍等。这些金属在水泥生产过程中释放,危害人类健康和生态系统。一种创新的方法涉及利用微生物进行生物修复,将污染物转化为有害形式较小的形式。微生物发展了对重金属的抗性机制,从而降低了水泥中的浓度和迁移率。在该项目中,收集了各种品牌和水泥类型,并培养了不同的细菌。对使用原子吸收光谱(AAS),能量分散X射线分析(EDAX)和扫描电子显微镜(SEM)进行生物治疗前后的机械性能,重金属浓度,元素组成,表面形态和水泥的粒径进行了比较。比较了传统和细菌诱导的水泥样品之间从进行的测试中获得的结果。这种生物技术方法的实施不仅解决了环境问题,而且还促进了建筑中创新和可持续解决方案的发展。关键字:水泥,重金属,生物修复,微生物,原子吸收光谱(AAS),能量分散X射线分析(EDAX),扫描电子显微镜(SEM),可持续性。
目的:甲状腺癌的治疗景观随着针对VEGFR,BRAF,MEK,NTRK和RET的激酶抑制剂的可用性而迅速变化。我们对激酶抑制剂在甲状腺癌中的作用进行了最新审查,并讨论即将进行的试验。设计与方法:对描述甲状腺癌激酶抑制剂的可用文献进行了全面综述。结果和结论:激酶抑制剂已成为转移性放射性碘 - 饮食性甲状腺癌患者的护理标准。短期治疗可以将分化的甲状腺癌重新敏感为放射性碘,从而有可能改善与长期使用激酶抑制剂相关的结果和保留毒性。Cabozantinib的批准为进行性放射性放射性碘 - 弗拉克疗法分化后,索拉非尼或Lenvatinib失败后,甲状腺癌增加了活性药物的可用武器群。vandetanib和cabozantinib已成为转移性甲状腺癌的主要治疗方法,而不管RET突变状态如何。selpercatinib和pralsetinib,有效和选择性受体激酶抑制剂具有针对RET的活性,彻底改变了甲状腺甲状腺癌和其他具有RET驱动突变的甲状腺癌的治疗范式。dabrafenib加上trametinib用于BRAF突变的甲状腺甲状腺癌为这种侵略性癌症提供了有效的治疗选择,并具有令人沮丧的预后。为了设计甲状腺癌的下一代药物,未来的努力将需要集中精力,以更好地理解对激酶抑制的抗性机制,包括旁路信号传导和逃生突变。