一类DNA折叠/结构统称为G-四链体(G4),通常在鸟嘌呤富基因组的区域中形成。G4 DNA被认为在基因转录和端粒介导的端粒维持中具有功能作用,因此是药物的靶标。导致鸟嘌呤四局部堆叠的分子相互作用的细节并不理解,这限制了G4序列的可药用性的合理方法。为了进一步探索这些相互作用,我们采用了电子振动 - 二维红外线(EVV 2DIR)光谱法,以测量由MyC2345核苷酸序列形成的平行链链G- Qu-Qu-Qu-Qu-Qubadruplex DNA的扩展振动偶联光谱。我们还跟踪了与G4折叠相关的结构变化,该变化是K + -ION浓度的函数,以产生进一步的见解。为了对折叠过程在振动耦合特性方面产生的结构元素进行分类,我们使用了使用密度功能理论的量子化学计算。这导致了与给定结构相关的耦合光谱的预测,这些耦合光谱与从EVV 2 -DIR光谱获得的实验耦合数据进行了比较。总体而言,在折叠过程中对102个耦合峰进行了实验鉴定并遵循。注意到了许多现象,并与折叠形式的形成相关。这包括频率变化,交叉强度的变化以及新耦合峰的出现。可以将新峰分配给复合物中特定化学基团之间的耦合,我们使用2DIR数据在我们的实验条件下为这种特定类型的G4提出了折叠序列。总体而言,实验2DIR数据和DFT计算的组合表明,在添加钾离子之前,在初始DNA中可能已经存在鸟嘌呤四重奏,但是这些四重奏是未储存的,直到添加钾离子为止,在这一点上形成了完整的G4结构。
摘要:有效的大脑功能需要多达总氧气摄入量的20%才能支持正常的神经元细胞功能。这种氧的使用水平会导致自由基的产生,因此可能导致氧化应激,并可能导致与年龄相关的认知衰减,甚至神经退行性疾病。该系统的调节需要一个复杂的监视网络以维持适当的氧气稳态。此外,大脑中线粒体的高含量具有升高的葡萄糖需求,因此需要正常的氧化还原平衡。维持这种情况是由适应性应激反应途径介导的,该途径允许细胞存活氧化应激并最大程度地减少细胞损伤。这些应力途径依赖于内质网(ER)的适当功能以及展开的蛋白质反应(UPR)的激活,这是一种导致正常ER功能和细胞存活的细胞途径。有趣的是,UPR具有两个相反的信号通路,一种促进细胞存活,一种诱导细胞凋亡。在这篇叙事综述中,我们讨论了UPR信号通路的相对作用,以及对这些压力途径的更好理解如何有可能允许开发有效的策略,以防止与年龄相关的认知衰减以及治疗神经退行性疾病。
脑回形成过程是大脑发育过程中生物和机械过程相互作用的结果,大脑通过脑回形成复杂的脑回丘和脑沟谷结构。研究人员开发了大量计算模型来研究皮质折叠。本综述旨在总结这些研究,重点介绍影响大脑发育和脑回形成的五个基本要素以及它们在计算模型中的表示方式:(i) 颅骨、脑膜和脑脊液的限制;(ii) 皮质层和区域的异质性;(iii) 皮质下纤维束的各向异性行为;(iv) 脑组织的材料特性;(v) 大脑的复杂几何形状。最后,我们重点介绍了未来模拟大脑发育的领域。
神经元是信息传输和信息处理中的专门细胞。之后,许多神经系统疾病与细胞活力/稳态问题直接相关,而是与电活动动力学的特定异常相关。认识到这一事实,基于神经元电活动的直接调节的治疗策略已取得了显着的结果,从耳蜗植入物到深脑刺激的成功实例。在这些植入设备上开发的开发受到了重要挑战的阻碍:功率要求,尺寸因子,信号转导和适应性/计算能力。回忆录,纳米级电子组件能够模仿自然突触,提供了独特的特性来解决这些约束及其在神经假体设备中的使用。在这里,我们首次证明了在临床相关的环境中使用回忆设备,在这种环境中,两个神经元种群之间的通信源于来源人群中的特定活动模式。在我们的方法中,Memristor设备执行了简单的模式检测计算,并充当能够可逆的短期可塑性的突触器。使用体外海马神经元培养物,我们使用监视器 - 计算活性范式显示出具有高度可重复性的实时自适应控制。我们设想了非常相似的系统用于自动检测和抑制癫痫患者的癫痫发作。
折叠和折纸原理可以从平面paters中实现三维几何形状[1]。由于制造过程通常更有效,甚至一定要在两个维度上完成,因此折叠提供了一种利用这种效率的方法,并具有三维最终结果。平面制造过程与折叠的组合导致了与机器人[2,3],弹簧 - 孔子机制[4],反射和阵列[5,6]和超材料[7,8]一样的潜在应用。兼容的机制通过经历弹性变形而不是传统链接的刚体运动来转移或转化运动,力或能量[9]。各种制造技术可用于各种规模的合规机理,例如电线电气加工(EDM),增材制造,表面微加工,
许多实验和计算工作试图了解DNA折叠的折叠,但是此过程的时间和长度尺寸构成了显着的挑战。在这里,我们提出了一种使用可切换力场的介观模型来捕获单链和双链DNA基序的行为以及它们之间的过渡,从而使我们能够模拟DNA折纸的折叠,最多可达几个千千目标。对小结构的布朗动力学模拟揭示了一个层次折叠过程,涉及将其拉入的折叠前体,然后结晶成最终结构。我们阐明了各种设计选择对折叠顺序和动力学的影响。较大的结构显示出异质的主食掺入动力学,并且在亚稳态状态中频繁捕获,而不是表现出第一阶动力学和实际上无缺陷的折叠的更容易接近的结构。该模型开辟了一条途径,以更好地理解和设计DNA纳米结构,以提高产量和折叠性能。
TDP-43 是一种蛋白质,通常可保持运动神经元健康。然而,在 MND 中,TDP-43 会行为失常,改变其结构,并对运动神经元造成伤害。在这个项目中,研究人员正在使用旨在识别行为失常的 TDP-43 蛋白的激动人心的新药。他们将测试这些药物是否能够识别并选择性地从运动神经元中去除有害的 TDP-43,而不会影响运动神经元正常运作所需的正常 TDP-43 蛋白。
我们考虑了在多变量结果的预期值中估算倍数变化的问题,该结果被观察到,这些结果受到未知样品特异性和类别特异性扰动的约束。我们是由对微生物分类单元的丰度进行高通量测序研究的动机,其中微生物相对于它们的真实丰度是系统地过度检测和未检测到的。我们的日志线性模型允许部分可识别的估计,我们通过施加可解释的参数约束来建立完整的可识别性。为了减少偏见并保证存在稀疏观测的参数估计值,我们将渐近可忽略不计和约束的惩罚应用于我们的估计功能。我们开发了一种快速坐标下降算法进行估计,并在零假设下进行估计的增强Lagrangian算法。我们构建模型得分测试,即使对于小样本量和违反分布构成的量,也证明了有效的推断。通过微生物关联与结直肠癌的荟萃分析来说明了方法和相关方法的比较。
正确折叠的蛋白对于几乎所有细胞过程至关重要,包括酶催化,信号转导和结构支持。细胞已经发展出复杂的控制机制,例如伴侣和蛋白质抗体网络的帮助,以确保蛋白质正确地成熟并正确折叠并保持其功能构象。在这里,我们回顾了控制关键激素调节剂或葡萄糖稳态折叠的机制。胰腺β细胞中的胰岛素合成始于前胰岛素的产生。在翻译过程中,胰岛素前体涉及内质网(ER)易位机制的成分,这对于预胰岛素信号肽的适当定向,易位和裂解至关重要。这些步骤对于启动Proinsulin的正确折叠至关重要。Proinsulin的可折叠性在ER中进行了优化,该环境旨在支持折叠过程和拆卸债券的形成,同时最大程度地减少错误折叠。这种环境与ER应力反应途径无关,这对胰腺β细胞具有有益的和潜在的有害作用。促硫素的折叠折叠可能导致过多的生物合成载荷,促硫素基因突变或影响ER折叠环境的遗传易感性。错误折叠的促硫蛋白会导致有效的胰岛素产生,并导致糖尿病发病机理。了解蛋白质折叠的机制对于解决糖尿病和其他蛋白质错误折叠的疾病至关重要。