植物在自然界中不断受到各种环境压力,这会影响其生长,繁殖,产量和生存。全球变暖和气候变化使背景应力水平加剧,使植物对压力组合的反应成为紧迫的关注点(Mora等,2015; Mankin等,2019)。在未来几十年中,由于温室气体和气溶胶排放方案的不同,适合种植某些植物的地理区域可能会发生重大变化(图1在美国提供了一个特定的例子)。植物需要感知,分类和交流多种压力信号,然后激活下游响应,同时分配资源。因此,需要研究对多种压力暴露的反应,以应对气候变化的巨大挑战。在这个研究主题问题中,已经涵盖了非生物压力和植物免疫力的几个重要方面,这可以提供一些提示,以应对养育不断增长的世界人群的极端挑战。大米,小麦,玉米和马铃薯是世界上消费最广泛的主食,提供了超过60%的全球粮食卡路里,并且在养活不断增长的人群方面发挥了关键作用。鉴于它们对全球粮食安全的重要性,必须了解这些农作物将如何受到气候变化的影响,并制定有效的策略来管理相关风险。Singh等。 此信息对于开发有效的疾病管理实践至关重要,这些疾病管理实践可以改变环境状况,并确保美国和世界各地的小麦生产的可持续性。Singh等。此信息对于开发有效的疾病管理实践至关重要,这些疾病管理实践可以改变环境状况,并确保美国和世界各地的小麦生产的可持续性。提供了有关美国重要小麦疾病的全面摘要,涵盖了其宿主范围,症状,有利的疾病,疾病管理和综合疾病管理策略,同时考虑了未来几十年气候变化的潜在影响。高温会加剧生物应激对植物的影响。最近的研究表明,包括钙调蛋白结合蛋白CBP60G在内的胞质钙信号传导在确保植物对高温的韧性方面起着至关重要的作用(Kim等,2022),以及介导生物和非生物压力和非生物压力的感知(Marcec等人(Marcec et al。,2019年)。Carpentier等。回顾了有关生物胁迫和温度对钙信号传导的总综合作用的当前文献。作者强调了钙信号中的几个分子成分,它们在植物反应中起重要作用
技术挑战 发展中的挑战。过去,以色列国防军、工业界和学术界之间的关系是这样的:军队主导技术发展,而商业公司和学术界采用所开发的技术。近年来,这种情况发生了逆转:商业公司进行大部分开发,而军队采用技术并使其适应其需求。230 这给开发高质量的安全技术带来了困难,因为军队不具备所需的专业知识。虽然民用人工智能公司依赖高级学者或领先的学术机构,但安全机构在开发基于人工智能的知识或产品方面面临挑战。此外,安全机构不从事独立研究和开发,而独立研究和开发是实现比较优势所必需的未来专业能力的基础设施。然而,安全机构目前正在缩小与民用工业的差距。将民用技术用于军事用途。将民用技术用于军事用途带来了挑战,因为它会导致算法提供不合适的解决方案,因为算法是针对其他需求进行训练的。231
1)基于地球的天文学:随着分段镜的出现,望远镜技术的范式发生了变化(Keck,1993),这似乎使非常大的望远镜可扩展到无限,尤其是适应性光学的成功,尤其是由于大气湍流而造成的blur show doce night> doce show a doce show> <[Gilmozzi]。几个项目将在这十年中看到第一光:TMT(TMT(30 m的主镜M1)和E-ELT(M1直径最初预见到42 m,最近降低至39 m),图1。请注意,允许良好图像质量的波前误差仅与观察到的波长有关(λ /14),从而使比率ε=精度 /大小明显小于任何现有项目。这些结构的大小使它们对外部干扰越来越敏感,例如由于地球旋转和风而引起的重力矢量的变化;这需要具有较大带宽的控制系统,与固有频率降低和轻度阻尼相冲突。量表效应分析[preumont]表明,这些复杂的光学机能系统的行为受到控制结构相互作用的威胁,控制结构相互作用迄今为止微不足道或至少无法控制[Aubrun]。
数据说明了一切•意大利是欧洲最古老的国家。意大利在世界出生时预期寿命排名中位居第五,仅次于香港、日本、瑞士和新加坡(男性为 80.5 岁,女性为 84.8 岁)。然而,老龄化质量较差,65 岁以上人群的健康状况差异很大。一旦达到 65 岁,健康预期寿命仅为 10 年,男女之间差别不大(Istat 数据)。人口老龄化带来了一系列挑战,其中许多挑战已为人所知并已争论了一段时间,但应对这些挑战的方案却不太为人所知和分享。人口老龄化和少子化带来的第一个挑战是如何应对福利成本的增加。社会保障和医疗卫生支出占国内生产总值的近25%,其中我国社会保障支出在最发达国家中位居第一(OECD数据),而与老年人口的需求相比,社会护理支出的资金越来越不足。第二个挑战涉及劳动力市场,因为人口急剧下降:从 2022 年的 5900 万人减少到 2080 年预计的 400 万人以上。20 世纪 50 年代至 70 年代(人口爆炸式增长的几年)期间,几乎有一半的意大利人出生,在未来 25 年内,他们将达到退休年龄(约 800 万工人),每天近千人。总体劳动力(由处于工作年龄(15-64岁)的人组成)的减少意味着公司将越来越难以找到可雇用的工人,并且需求和供应之间的技能不匹配将越来越严重。此外,到2050年,劳动年龄人口与非劳动年龄人口的比例将从目前的3比2变为1比1:因此,每有一个“劳动”年龄人口,就会有一个“被动”年龄人口,即依赖福利的人口。经合组织的报告《寿命更长,工作更长》分析了这些事实的含义,提醒我们寿命更长也意味着工作时间更长,如果没有适当的应对,人口变化将不可避免地对家庭福祉、公共财政以及劳动力市场产生影响。尽管到目前为止,人口结构转变效应的渐进性使我们能够推迟必要的改革,但不作为的代价会随着时间的推移而增加,从而使潜在的再平衡越来越遥不可及。但与年轻人相比,人口结构中更大的比重到底起到了什么作用,我们真的知道多少呢?这是否影响经济运转?事实上,这是一个分析老年人经济部分功能的问题,由于老年人寿命较长,他们不仅在社会保障和医疗保健方面有新的需求,而且在消费、投资、投资组合选择和环境可持续性方面也有新的需求。这是一个多元化的世界,由接近退休的工人、年轻的退休人员和仍然活跃的老年人组成,但也由具有不同需求的非自给自足的个人组成。寿命的延长导致人口统计学上产生了新一代:长世代,即那些在 65 岁以后仍然活跃的人群。在这个漫长的晚年阶段,人们只有在 70-75 岁之后才可以被视为老年人,而且在许多情况下
人工智能 (AI),包括机器学习 (ML),提供了使交通系统更安全、更公平、更可靠、更便捷、更安全、更高效和更具弹性的机会。然而,存在一些挑战,可能会阻碍人工智能在智能交通系统 (ITS) 中的成功应用以及这些好处的潜在实现。这些挑战包括但不限于围绕数据、支持技术、偏见、安全、隐私、道德和公平、泛化、模型漂移、可解释性、责任、人才/劳动力可用性和利益相关者看法的问题。虽然这些对人工智能采用和实施的挑战涉及各个领域,但本报告重点关注它们对 ITS 的影响以及机构在帮助缓解这些挑战时可以考虑的见解。表 1 总结了这 12 个挑战、它们对 ITS 的影响以及机构可以考虑的见解和经验教训。
新鲜无花果被认为是一种极易腐烂的水果,保质期较短。因此,有必要在收获前和收获后寻找创新策略来提高其质量并延长其保质期。这项研究的目的是研究在收获前用两种浓度(1 和 2 mM)的草酸(AO)通过叶面施用处理的 Calabacita 品种新鲜无花果的收获后行为。共进行了 3 次独立应用,第一次是在无花果生长从 II 期转变为 III 期时,接下来的两次应用间隔 7 天。每种处理的果实在商业成熟时采摘,并在 1 ºC 和 90% 相对湿度的条件下储存 10 天。在第 0、7 和 10 天采集样本,并在每个日期测定重量、大小、总可溶性固体 (TSS)、可滴定酸度 (TA)、总酚、总抗氧化活性 (DPPH) 以及抗坏血酸过氧化物酶 (APX)、过氧化氢酶 (CAT) 和过氧化物酶 (POD) 的酶活性。结果表明,在两种浓度的 OA 下,无花果在整个储存过程中的重量、尺寸和 TA 均较高,而 TSS 含量较低。贮藏期间AO处理提高了CAT和APX活性,但对果实的非酶抗氧化系统没有影响。因此,我们可以得出结论,OA应用可以提高新鲜无花果的品质并增加其存储容量。
1.探索采购过程中数据共享的潜力和注意事项:虽然人们认识到在采购过程中与供应商共享数据的好处,但也承认在当前的监管环境下共享数据具有挑战性,但可以考虑进行试验和试点,以探索潜力并分享最佳实践。参与者还指出,从更广泛的角度来看,政府机构之间共享数据对于解决复杂的政策问题是必要的,但目前是一项重大挑战。在阿联酋,迪拜对这一问题的答案是由智能迪拜提供的,这是一个负责改善迪拜生活和旅游体验的政府机构。智能迪拜正在创建使政府机构能够共享数据的基础设施和流程。虽然该计划相对较新,但它是旨在增加数据共享的切实政府行动的一个例子。
摘要:人工智能 (AI) 结合了算法、机器学习和自然语言处理的应用。AI 在教育领域有多种应用,例如自动评估和面部识别系统、个性化学习工具和微博系统。这些 AI 应用有可能通过支持学生的社交和认知发展来提高教育能力。尽管具有这些优势,但 AI 应用仍存在严重的伦理和社会缺陷,而这些缺陷在 K-12 教育中很少被考虑。将这些算法融入教育可能会加剧社会现有的系统性偏见和歧视,使来自边缘化和服务不足群体的学生的隐私、自主权和监视问题长期存在,并加剧现有的性别和种族偏见。在本文中,我们探讨了 AI 在 K-12 教育中的应用,并强调了它们的道德风险。我们引入教学资源,帮助教育工作者应对整合人工智能的挑战,并提高 K-12 学生对人工智能和道德的理解。本文最后提出了研究建议。
› wp-content › uploads › 2021/12 PDF 车辆。类似的灵感促使我们去追求。8. 2020 年度报告 RAA .ORG......深刻影响了整个航空供应链。104 页
文章标题:抗击 COVID-19:人工智能技术与挑战 作者:Nikhil Patel[1]、Sandeep Trivedi[2]、Jyotir Moy Chatterjee[3] 所属机构:毕业于杜比克大学,联系电子邮件 ID:Patelnikhilr88@gmail.com[1],IEEE 会员,毕业于 Technocrats Institute of Technology,联系电子邮件 ID:sandeep.trived.ieee@gmail.com[2],尼泊尔加德满都佛陀教育基金会[3] Orcid id:0000-0001-6221-3843[1]、0000-0002-1709-247X[2]、0000-0003-2527-916X[3] 联系电子邮件:sandeep.trived.ieee@gmail.com 许可信息:本作品已以开放获取形式发表根据 Creative Commons 署名许可 http://creativecommons.org/licenses/by/4.0/,允许在任何媒体中不受限制地使用、分发和复制,前提是正确引用原始作品。条件、使用条款和出版政策可在 https://www.scienceopen.com/ 找到。预印本声明:本文为预印本,尚未经过同行评审,正在考虑并提交给 ScienceOpen Preprints 进行公开同行评审。DOI:10.14293/S2199-1006.1.SOR-.PPVK63O.v2 预印本首次在线发布:2022 年 7 月 25 日 关键词:COVID-19、SVM、神经网络、NLP、数学建模、高斯模型、疫情防控
